de | en

Laser and X-Ray Physics

Prof. Reinhard Kienberger

Research Field

Our group aims at investigating processes inside atoms and molecules on the shortest timescale reached so far, the attosecond timescale. One attosecond is E-18 seconds and compares to one second like one second to the age of the universe. New insight into ever smaller microscopic units of matter as well as in ever faster evolving chemical, physical or atomic processes pushes the frontiers in many fields in science. The interest in these ultrashort processes is the driving force behind the development of sources and measurement techniques that allow time-resolved studies at ever shorter timescales.

Address/Contact

James-Franck-Str. 1
85748 Garching b. München
+49 289 12841
Fax: +49 289 12842

Members of the Research Group

Professor

Office

Scientists

Students

Other Staff

Teaching

Course with Participations of Group Members

Titel und Modulzuordnung
ArtSWSDozent(en)Termine
Physik für Life-Science-Ingenieure 2
eLearning-Kurs
Zuordnung zu Modulen:
VO 3 Iglev, H. Mi, 10:00–14:00, WZW H14
Übung zu Physik für Life-Science-Ingenieure 2
eLearning-Kurs
Zuordnung zu Modulen:
UE 3 Reichert, J.
Leitung/Koordination: Iglev, H.
Termine in Gruppen
Bachelorpraktikum in Physik
Zuordnung zu Modulen:
FO 2
Leitung/Koordination: Kienberger, R.
Masterpraktikum (AEP)
Zuordnung zu Modulen:
FO 10
Leitung/Koordination: Kienberger, R.
Masterpraktikum (BIO)
Zuordnung zu Modulen:
FO 10
Leitung/Koordination: Kienberger, R.
Masterpraktikum (KM)
Zuordnung zu Modulen:
FO 10
Leitung/Koordination: Kienberger, R.
Masterpraktikum (KTA)
Zuordnung zu Modulen:
FO 10
Leitung/Koordination: Kienberger, R.
Masterseminar (AEP)
Zuordnung zu Modulen:
SE 10
Leitung/Koordination: Kienberger, R.
Masterseminar (BIO)
Zuordnung zu Modulen:
SE 10
Leitung/Koordination: Kienberger, R.
Masterseminar (KM)
Zuordnung zu Modulen:
SE 10
Leitung/Koordination: Kienberger, R.
Masterseminar (KTA)
Zuordnung zu Modulen:
SE 10
Leitung/Koordination: Kienberger, R.
Theoretikum (TMP)
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
FO 6
Leitung/Koordination: Kienberger, R.

Offers for Theses in the Group

Nonlinear Laser fault injection in semiconductor devices

Fault Injection through Laser irradiation is an established attack method in the context of hardwarebased IT-security. Faulty data can be exploited in various ways to break the security measures of an Integrated Circuit. These techniques are referred to as “Fault Attacks”. This project will address fault injection employing a state of the art ultra-short pulse laser system. With semiconductors being inherently sensitive to light, it is feasible to induce transient currents in a chip by irradiation. The goal is to optimize the light source taking into account nonlinear optics to utilize the dominant physics in the best possible way.

The thesis is performed in cooperation with the Fraunhofer Research Institution for Applied and Integrated Security (AISEC) and comprises the following tasks:

                Development of a laser workbench including IR generation.

                Systematic studies of the laser source (focusing, wavelength, pulse duration . . . ).

                Study of the fault injection on a model system.

suitable as
  • Master’s Thesis Condensed Matter Physics
  • Master’s Thesis Applied and Engineering Physics
Supervisor: Reinhard Kienberger
Optimization of an attosecond high-harmonic-generation setup towards higher orders

The Backbone of state of the art ultrafast metrology measurements is the high-harmonic-generation (HHG).

This process is driven by a few-cycle laser pulse being focused into a gas. In doing so, several harmonic orders

of the used light are generated and can thus be used for a variety of experiments. The maximum (aka. Cut-off)

energy reachable via this process depends on a variety of factors, e.g. the used gas or the chosen focussing.

The main part of the work will be the investigation of these factors in order to reach a higher Cut-off.

suitable as
  • Bachelor’s Thesis Physics
Supervisor: Reinhard Kienberger
Setup of a femtosecond optical pulse characterization SHG-FROG device
suitable as
  • Bachelor’s Thesis Physics
Supervisor: Reinhard Kienberger
Simulation and Setup of a high-power laser enhancement cavity

Masterarbeit: Simulation und Aufbau einer Überhöhungskavität für hohe optische Leistungen

Hast Du Dich schon mal gefragt, was passieren würde, wenn man einen Lichtpuls zwischen zwei Spiegeln einfängt? Genau das wollen wir versuchen und damit die Grenzen der Physik im Bereich der hohen Laserleistungen ausloten. Ziel des Projektes ist eine Verbesserung von MuCLS, einer kompakten, aber brillanten Lichtquelle. Diese liefert Röntgenpulse durch inverse Comptonstreuung von Elektronen an Laserpulsen. Um die Intensität, die Wellenlänge und allgemeine Einsatzmöglichkeiten der Lichtquelle zu erweitern, beschäftigen wir uns mit einem Upgrade der Überhöhungskavität.

Aktuell sind wir dabei das Design des experimentellen Aufbaus zu finalisieren. Deine Aufgabe wird es sein, mit uns das Konzept umzusetzen. Das beinhaltet das Setup aufzubauen und zu testen. Gleichzeitig werden Simulationen durchgeführt werden, zum Beispiel um den Einfluss der Krümmungsradien der Spiegel besser zu verstehen. Die Ergebnisse werden direkt auf die Verbesserung des Aufbaus übertragen. Schlussendlich erhoffen wir uns das erste Mal eine Finesse von 30.000 in der grünen Überhöhungskavität zeigen zu können.

Alles Weitere erfährst Du bei einem persönlichen Gespräch.

 

Masterthesis: Simulation and Setup of a high-power laser enhancement cavity

 

Have you ever asked yourself what would happen if you trap a pulse of light in between two mirrors? This is exactly what we are planning to do and thereby determine the boundaries of high-power laserphysics. The project as a whole is embedded in the frame of MuCLS, a compact but brilliant light source. This light source generates X-ray pulses by inverse Compton scattering of electron on a laser pulse. Upgrading the intensity, wavelength and overall quality of the laser pulse is the goal here in order to extend the range of applications.

Currently, we are finalizing the design of the overall experimental setup. Your task would be to support us in transforming the concept into reality. This includes building the setup and testing it. Meanwhile some simulations on different parameters such as the radius of curvature of the mirrors will have to be performed. The results will directly influence and improve the setup. In the end, we hope to show a finesse of 30.000 in the laser cavity.

If you are interested, feel free to get in touch.

suitable as
  • Master’s Thesis Condensed Matter Physics
  • Master’s Thesis Nuclear, Particle, and Astrophysics
  • Master’s Thesis Biophysics
  • Master’s Thesis Applied and Engineering Physics
  • Master’s Thesis Quantum Science & Technology
Supervisor: Reinhard Kienberger

Current and Finished Theses in the Group

Attosecond Photoemission Dynamics of the HOPG Valence Band
Abschlussarbeit im Masterstudiengang Physics (Applied and Engineering Physics)
Themensteller(in): Reinhard Kienberger
Design and Development of an Infrared Spectral Filter for Wildfire Detection with Small Satellites
Abschlussarbeit im Masterstudiengang Physik (Physik der kondensierten Materie)
Themensteller(in): Reinhard Kienberger
Infrared Activated Polaron Modes in Small Molecule Acceptor-Donor Polymere Blends
Abschlussarbeit im Masterstudiengang Physics (Applied and Engineering Physics)
Themensteller(in): Hristo Iglev
Simulation and Design of an Ion Time of Flight Spectrometer
Abschlussarbeit im Bachelorstudiengang Physik
Themensteller(in): Reinhard Kienberger
Top of page