de | en

Essentials of Physics for Life Sciences

Module PH9034

This module handbook serves to describe contents, learning outcome, methods and examination type as well as linking to current dates for courses and module examination in the respective sections.

Basic Information

PH9034 is a semester module in German language at Bachelor’s level which is offered in winter semester.

This module description is valid from WS 2019/20 .

If not stated otherwise for export to a non-physics program the student workload is given in the following table.

Total workloadContact hoursCredits (ECTS)
210 h 120 h 7 CP

Responsible coordinator of the module PH9034 is Julia Herzen.

Content, Learning Outcome and Preconditions

Content

The module Essentials of Physics for WZW  introduces students of life sciences to basic experimental physics. 

 

The lecture Essentials of Physics for WZW covers the following topics:

1. Introduction, units and dimensions, experimental accuracy and errors

2. Mechanical motions, coordinate systems and ballistics, Newton’s laws, frictional and inertial forces

3. Mechanical work, energy and power, kinetic and potential energy, energy conversion and energy conservation

4. Elastic and plastic collisions

5. Rotational motions, torque and moment of inertia, angular momentum, rotational kinetic energy, gyroscopic precessions

6. Harmonic oscillations, overlap of harmonic oscillations, damped and driven harmonic oscillators

7. Mechanical waves, wave equation, standing waves, interference and diffraction, acoustics, Doppler effect

8. Electrostatics, Coulomb low, electric fields, Gauss-Low, electric induction

9. Capacitors, current and resistance, electrical work and power, electrical circuits

10. Magnetism, magnetic force between conducting wires, magnetic fields in coils, Lorentz force

11. Magnetization, magnetic induction, electric motors, generators and transformers

12. Ray optics and optical imaging, detectors, refraction and reflection

13. Lenses and mirrors, aberrations, magnifiers, microscope and telescope

14. Wave optics, interference and diffraction of light, polarization and scattering

Content of the laboratory classes:

Measurements, data statistics and experimental accuracy

Mechanics (balance, oscillator and resonance)

Thermodynamics (van der Waals equation of state, heat conduction, fuel cell)

Optics (spectrophotometry, microscope) 

Electrostatics (basic electrical circuits, alternating current, electrolysis)

Learning Outcome

After successful completion of the module the students are able to:

(1) understand the basic physical processes and to use basic mathematical and statistical methods

(2) outline and calculate the evolution of mechanical motions, to use and apply the Newton’s laws, to understand causes and effects of the varying physical and inertial forces 

(3) apply the principles for energy and momentum conservation 

(4) describe elastic and inelastic collisions

(5) describe rotational motions, to calculate and apply the moment of force and inertia, angular momentum and rotational kinetic energy

(6) describe and calculate various mechanical oscillations, including damped and driven oscillators

(7) describe mechanical waves, including their interference and diffraction. To have knowledge on acoustics and Doppler effect

(8) apply the main principles of electrostatics and to use the Coulomb and Gauss low for calculate the electric fields and charge distributions

(9) describe, calculate and use various capacitors, electrical current and resistance, electrical work and power, electrical circuits

(10)understand the basic principles of magnetism, to calculate magnetic forces between conducting wires, magnetic fields in coils, and the Lorentz force

(11) have basic knowledge on magnetization, magnetic induction, electric motors, generators and transformers

(12) describe and use ray optics and optical imaging, detectors, refraction and reflection

(13) describe and calculate optical systems containing lenses and mirrors, magnifiers, as well as microscopes and telescopes

(14) understand the principles of wave optics, to describe and calculate interference and diffraction of light, polarization and scattering

Preconditions

mathematical skills as required to pass the Abitur:

·    geometry 

·    vector analysis 

·    differential calculus 

·    integral calculus 

Courses, Learning and Teaching Methods and Literature

Courses and Schedule

Learning and Teaching Methods

The module consists of a lecture, a tutorial and a lab course.

Lecture: ex-cathedra teaching with demonstration experiments

Exercise to Physics Compact for WZW: students get problem sheets and try to solve these problems by themselves or in small groups in the first part of each tutorial session. After this phase sample solutions are presented by students or the lecturer and also possible alternative ways to solve to the problems are discussed. Students who present at least two solutions per term during the tutorial and who work through the problem sheets regularly (i.e. they miss at most two problem sheets) can get a bonus of 0.3 on the grade of the module. Following these tutorials will help the students to be prepared to solve the problems during the written exam.

The lecture and the tutorial are closely intertwined and the lecturers are in constant exchange. The lab class is not synchronized with the lecture course.

The lab class consists of a training phase and a practical exam. During the training phase in the lab students perform and describe seven different experiments, one of them is repeated in a slightly modified way on the day of the practical exam. The students work in small groups of two to three persons when carrying out the experiments and writing the lab report. For the admission to the practical exam the students need to have performed all seven experiments and have successfully written all lab reports (tutors can reject bad lab reports) and to have taken all seven written exams during the training phase. 

Media

During the lecture a powerpoint presentation is used and some contents are explained using the blackboard. Additionally some example videos and experiments are shown during the lecture. For the exercises problem sheets are prepared. An e-learning course in Moodle exists. Presentation slides and problem sheets as well as sample solutions to problems which have already been discussed in the tutorials are available on this platform.

Literature

  • Olaf Fritsche „Physik für Biologen und Mediziner“ Springer Verlag

  • Paul A. Tipler: Physik. Spektrum Lehrbuch, 3. korr. Nachdruck 2000
  • D. Giancoli: Physik, Pearson Verlag, 1. Auflage 2011

Module Exam

Description of exams and course work

There will be a written exam of 90 minutes duration. Therein the achievement of the competencies given in section learning outcome is tested exemplarily at least to the given cognition level using calculation problems and comprehension questions.

For example an assignment in the exam might be: For example an assignment in the exam might be: The exam is held in German: Ein Hochstrahlbrunnen spritzt das Wasser bis in eine Höhe von 140 Metern über der Düse. a) Berechnen Sie die Geschwindigkeit v0 (in km/h), mit der das Wasser aus der Düse strömen würde, wenn keine mechanische Energie verloren ginge. b) Berechnen Sie die Geschwindigkeit v1 (ebenfalls in km/h) des Wassers in halber Höhe. c) Erläutern Sie, warum der tatsächliche Wert der Geschwindigkeit des aufsteigenden Wassers mit ca. 200km/h für v0 über dem berechneten Wert liegt. d) Berechnen Sie welche Höhe die Fontäne erreichen würde, wenn v0 nur halb so groß wie der in Aufgabenteil a) berechnete Wert wäre. e) Pro Sekunde durchlaufen die 500 l Wasser die Düse. Untersuchen Sie, wie lange die Fontäne mit einer Energie von 10.000 Kalorien betrieben werden kann.

In the exam the following learning aids are permitted: In the exam the following learning aids are permitted: pocket calculator, hand written formulary (i.e. hand written notes on a sheet of the size A4. No copies.).

Participation in the tutorials is strongly recommended since the exercises prepare for the problems of the exam and rehearse the specific competencies.

There will be a bonus (one intermediate stepping of "0,3" to the better grade) on passed module exams (4,3 is not upgraded to 4,0). The bonus is applicable to the exam period directly following the lecture period (not to the exam repetition) and subject to the condition that the student passes the mid-term of There will be a bonus (one intermediate stepping of "0,3" to the better grade) on passed module exams (4,3 is not upgraded to 4,0). The bonus is applicable to the exam period directly following the lecture period (not to the exam repetition) and subject to the condition that the student passes the mid-term of • working through the problem sheets regularly (missing most two problem sheets) • presenting at least two sample solutions to the problems to the group

Exam Repetition

There is a possibility to take the exam in the following semester.

Top of page