Technical Physics
Prof. Rudolf Gross, Prof. Stefan Filipp
Research Field
The research activities of the Walther-Meißner-Institute are focused on low temperature solid-state and condensed matter physics. The research program is devoted to both fundamental and applied research and also addresses materials science, thin film and nanotechnology aspects. With respect to basic research the main focus of the WMI is on
- superconductivity and superfluidity,
- magnetism, spin transport, and spin caloritronics,
- quantum phenomena in mesoscopic systems and nanostructures,
- quantum technology and quantum computing,
- and the general properties of metallic systems at low and very low temperatures.
The WMI also conducts applied research in the fields of
- solid-state quantum information processing systems,
- superconducting and spintronic devices,
- oxide electronics,
- multi-functional and multiferroic materials,
- and the development of low and ultra low temperature systems and techniques.
With respect to materials science, thin film and nanotechnology the research program is focused on
- the synthesis of superconducting and magnetic materials,,
- the single crystal growth of oxide materials,
- the thin film technology of complex oxide heterostructures including multi-functional and multiferroic material systems,
- the fabrication of superconducting, magnetic, and hybrid nanostructures,
- and the growth of self-organized molecular ad-layers.
The WMI also develops and operates systems and techniques for low and ultra-low temperature experiments. A recent development are dry mK-systems that can be operated without liquid helium by using a pulse-tube refrigerator for precooling. Meanwhile, these systems have been successfully commercialized by the company VeriCold Technologies GmbH at Ismaning, Germany, which meanwhile has been acquired by Oxford Instruments. As further typical examples we mention a nuclear demagnetization cryostat for temperature down to below 100µK, or very flexible dilution refrigerator inserts for temperatures down to about 20mK fitting into a 2inch bore. These systems have been engineered and fabricated at the WMI. Within the last years, several dilution refrigerators have been provided to other research groups for various low temperature experiments. The WMI also operates a helium liquifier with a capacity of more than 150.000 liters per year and supplies both Munich universities with liquid helium. To optimize the transfer of liquid helium into transport containers the WMI has developed a pumping system for liquid helium that is commercialized in collaboration with a company.
Address/Contact
Walther-Meißner-Straße 8
85748 Garching b. München
+49 (89) 289 - 14202
Fax: +49 (89) 289 - 14206
Members of the Research Group
Professors
Photo | Degree | Firstname | Lastname | Room | Phone | |
---|---|---|---|---|---|---|
![]() |
Prof. Dr. | Stefan | Filipp | – | +49 89 289-14201 | |
![]() |
Prof. Dr. | Rudolf | Gross | – | +49 89 289-14249 |
Office
Photo | Degree | Firstname | Lastname | Room | Phone | |
---|---|---|---|---|---|---|
![]() |
Emel | Dönertas | – | +49 89 289-14202 |
Scientists
Other Staff
Photo | Degree | Firstname | Lastname | Room | Phone | |
---|---|---|---|---|---|---|
![]() |
Prof. Dr. | Dietrich | Einzel | – | +49 89 289-14230 | |
![]() |
Astrid | Habel | – | – | ||
![]() |
Dipl.-Kffr. | Martina | Meven | – | +49 89 289-14255 | |
![]() |
Andrea | Person | – | +49 89 289-14205 | ||
![]() |
Carola | Siegmayer | – | +49 89 289-14216 |
Teaching
Course with Participations of Group Members
Offers for Theses in the Group
- Lateral angular momentum transport by phonons
- In a solid-state system, spin angular momentum is mediated by various (quasi-)particles. Among these excitations are phonons, which can carry angular momentum over mm distances. Most importantly, exchange of spin angular momentum from these crystal lattice vibrations to excitations of the magnetic lattice is possible via magneto-elastic coupling effects. This unlocks novel means for coherent and incoherent spin transport concepts without moving charges. Your thesis will be dedicated in assessing the realization of incoherent angular momentum transfer in nanostructured systems. In your thesis you will work on an all-electrical injection and detection scheme to access incoherent angular momentum transfer. You will use state-of-the-art nanofabrication techniques using electron beam lithography and thin film deposition machines for the realization of magnon-phonon hybrid devices. You will also gain experience in cryogenic magnetotransport techniques. You will develop automated evaluation tools and work on modelling the observed phenomena.
- suitable as
- Master’s Thesis Condensed Matter Physics
- Supervisor: Rudolf Gross
- Magnetic resonance spectroscopy in two dimensional ferromagnets
- Dimensionality crucially influences the properties of materials. Two-dimensional (2d) van der Waals materials in the monolayer limit are presently heavily investigated. Within this class of materials systems with magnetic order exist, yet only limited insights have been obtained with respect to their magnetic excitation properties. A major experimental challenge is the small volume and thus low number of spins in these systems. Thus, high sensitivity techniques and large filling factors are key for successful studies of these materials. The goal of this thesis is to use planar superconducting resonators in combination with 2d van der Waals ferromagnets to study magnetic excitations at low temperatures by microwave spectroscopy. You will work on implementing the microwave-based spectroscopy of magnetic excitations in 2d systems. You will use state-of-the-art nanofabrication techniques like electron beam lithography and thin film deposition machines for the superconducting resonators. You will also gain experience in cryogenic microwave spectroscopy utilizing vector network analyzing techniques. Another important aspect will be the development of a quantitative model to illuminate the underlying physics of the magnetic excitations.
- suitable as
- Master’s Thesis Quantum Science & Technology
- Supervisor: Rudolf Gross
- Magnon-mechanics in suspended nano-structures
- Nano-mechanical strings are archetypical harmonic oscillators and can be straightforwardly integrated with other nanoscale systems. For example, the field of nano-electromechanics studies the coupling of nano-strings to microwave circuits, which resulted in the creation of mechanical quantum states and concepts for microwave to optics conversion. Here, we plan to investigate an alternative hybrid system based on ferromagnetic nanostructures integrated with nano-strings or nano-mechanical platforms. These hybrid devices aim at the efficient conversion between phonons and magnons with the potential to interact with light and are thus ideal candidates for conversion applications. We are looking for a motivated master student for a nano-mechanical master thesis in the context of magnon-phonon interaction. The goal of your project is to investigate the static and dynamic interplay between the mechanical and magnetic properties of a nano-mechanical system sharing an interface with a magnetic layer. In your thesis project, you will fabricate freely suspended nanostructures based on magnetic thin films using state-of-the-art nano-lithography and deposition techniques. Further, you will probe the mechanical response of the nano-structures using optical interferometry while exciting the magnetization dynamics of the magnetic system.
- suitable as
- Master’s Thesis Quantum Science & Technology
- Supervisor: Rudolf Gross
- Magnon transport in laterally confined magnetic insulators
- In antiferromagnetic insulators, we obtain two magnon modes with opposite spin chirality due to the two opposing magnetic sublattices. In this way, magnon transport in antiferromagnetic insulators can be considered as the magnonic equivalent of electronic spin transport in semiconductors and the properties can be mapped onto a magnonic pseudospin. At present, most experiments rely on extended epitaxial thin films of antiferromagnetic insulators. Your thesis will be dedicated to confine the lateral dimensions of the magnon transport channel. By conducting all-electrical magnon transport experiments, you will then determine the role of lateral confinement in such measurement schemes. You are interested in providing novel insights into pseudospin properties in antiferromagnetic insulators and provide a spark for theoretical descriptions. In order to answer questions regarding magnon transport in magnetic insulators, your thesis will contain aspects of the fabrication of nano-scale devices using electron beam lithography as well as ultra-sensitive low-noise electronic measurements at high magnetic fields in a cryogenic environment.
- suitable as
- Master’s Thesis Condensed Matter Physics
- Supervisor: Rudolf Gross
- Nano-electromechanics in the non-linear regime
- Circuit nano-electromechanics is a new field in the overlap region between solid-state physics and quantum optics with the aim of probing quantum mechanics in macroscopic mechanical structures. We employ superconducting circuits to address fundamental questions like the preparation of phonon number states in the vibrational mode and the conversion of quantum states between the mechanical element and the microwave domain. The initial successful experiments of the group include hybrid devices based on nano-string resonators inductively coupled to frequency tunable microwave resonators. This setting allows to explore large optomechanical single photon rates, enables intrinsic amplification schemes, and hereby allows to access a new regime of light matter coupling. The goal of your thesis is the development and fabrication of hybrid devices based on frequency tunable superconducting microwave resonators with integrated nanomechanical string-resonators as well as their spectroscopy. This includes the design and fabrication of these devices, where you will use state-of-the-art simulation and nano-fabrication techniques. The second main aspect of your thesis is their investigation using highly sensitive microwave spectroscopy techniques in a low-temperature environment.
- suitable as
- Master’s Thesis Quantum Science & Technology
- Supervisor: Rudolf Gross
- Non-reciprocal magnonic devices
-
Spin waves (magnons) are the quantized excitations of the magnetic lattice in solid state systems. The field of magnonics is exploring concepts to use these magnons for information transport and processing. Of particular interest is to achieve non-reciprocity for opposite spin wave propagation directions, which can be realized in hybrid structures of a periodic artificial magnetic array on top of a magnonic waveguide. These systems would be potential candidates for compact microwave directional couplers and circulators operational at low temperatures. The goal of this thesis is to develop and optimize such nonreciprocal devices based on periodic magnetic arrays. This implementation is a first step towards compact low temperature microwave circuits relevant for superconducting quantum circuits.
You are a resourceful master student willing to contribute with your thesis towards the successful implementation of nonreciprocal microwave devices at cryogenic temperatures. You will use state-of-the-art nanofabrication techniques using electron beam lithography and thin film deposition machines to design your hybrid systems. You will also gain experience in cryogenic microwave spectroscopy utilizing vector network analyzing techniques. Utilizing a combination of numerical and analytical models, you will drive the optimization of such hybrid devices.
- suitable as
- Master’s Thesis Quantum Science & Technology
- Supervisor: Rudolf Gross
- Optical detection of magnetization dynamics at low temperatures
- Utilizing magneto-optical effects enables the investigation of excitations in magnetic systems like magnons or spin waves down to the sub-micrometer scale. In this way, one can probe spin wave propagation in micro-patterned ferromagnetic materials, which is highly relevant for spintronic applications as well the investigation of tailored quantum systems. Especially at low temperatures, novel magnetic phases exist with intriguing magnetization dynamic properties. The goal of this thesis is the optical investigation of spatially resolved magnetization dynamics in spintronic devices as well as hybrid quantum systems at cryogenic temperatures. We are searching for a highly motivated master student to start the experiments on optically detected magnetization dynamics at cryogenic temperatures. You will improve the optical setup used for the detection of magnetization dynamics to increase the sensitivity. In addition, you will work with state-of-the-art microwave equipment to drive the magnetization dynamics in spintronic devices and hybrid systems. After assessing the performance of the setup with state-of-the-art magnetic systems, you will work in the clean room facilities of our institute to carry out the microfabrication steps to define your own spintronic devices or hybrid systems.
- suitable as
- Master’s Thesis Quantum Science & Technology
- Supervisor: Rudolf Gross
Current and Finished Theses in the Group
- Active Reset of Fluxonium Qubits
- Abschlussarbeit im Bachelorstudiengang Physik
- Themensteller(in): Stefan Filipp
- CoxFe1-x thin films for future magnonic devices
- Abschlussarbeit im Bachelorstudiengang Physik
- Themensteller(in): Rudolf Gross
- Energy exchange between spatially separated cryogenic rare-earth electronic spin ensembles
- Abschlussarbeit im Austauschprogramm Physik (Master-Niveau, halbjährige Arbeit, 30 CP + 5 CP Kolloquium)
- Themensteller(in): Rudolf Gross
- Advanced calibration of superconducting qubits
- Abschlussarbeit im Masterstudiengang Quantum Science & Technology
- Themensteller(in): Stefan Filipp
- Generating small magnetic fields inside an open-end magnetic shielding with a superconducting solenoid magnet
- Abschlussarbeit im Masterstudiengang Physik (Physik der kondensierten Materie)
- Themensteller(in): Rudolf Gross
- Fabrikation und Charakterisierung planarer Mikrowellenresonatoren aus NbTiN bei tiefen Temperaturen
- Abschlussarbeit im Bachelorstudiengang Physik
- Themensteller(in): Hans-Gregor Hübl
- Fabrication of a Superconducting Transmission Line in a Planar Design on a Spin-Doped Crystalline Membrane
- Abschlussarbeit im Masterstudiengang Physik (Physik der kondensierten Materie)
- Themensteller(in): Rudolf Gross
- Magnetometry with NV centres in diamond - implementation of an optically detected magnetic resonance setup
- Abschlussarbeit im Bachelorstudiengang Physik
- Themensteller(in): Hans-Gregor Hübl
- Magnon-Phonon Coupling in Symmetric Magneto-Metallic Thin Film/Bulk Acoustic Wave Resonator Heterostructures
- Abschlussarbeit im Austauschprogramm Physik (Bachelor-Niveau, 12 CP + 3 CP Kolloquium)
- Themensteller(in): Hans-Gregor Hübl
- Mechanical properties of NbTiN nano-strings
- Abschlussarbeit im Bachelorstudiengang Physik
- Themensteller(in): Hans-Gregor Hübl
- Microwave Manipulation of Magnon Transport and Spin Pumping
- Abschlussarbeit im Masterstudiengang Physik (Physik der kondensierten Materie)
- Themensteller(in): Rudolf Gross
- Quench protection for a superconducting magnet
- Abschlussarbeit im Bachelorstudiengang Physik
- Themensteller(in): Rudolf Gross
- Superconducting Microwave Resonators for Spin-Based Quantum Memories
- Abschlussarbeit im Masterstudiengang Physics (Applied and Engineering Physics)
- Themensteller(in): Hans-Gregor Hübl
- Unidirectional Spin Wave Propagation in Magnetic Nanograting/Thin Film Heterostructures
- Abschlussarbeit im Masterstudiengang Physik (Physik der kondensierten Materie)
- Themensteller(in): Rudolf Gross
- Thermal history dependent electronic properties of κ-(BEDT-TTF)2Cu[N(CN)2]X (X=Br,Cl) near the Mott-metal-insulator transition
- Abschlussarbeit im Masterstudiengang Physik (Physik der kondensierten Materie)
- Themensteller(in): Rudolf Gross
- Growth optimization and magnetotransport properties of ferromagnetic insulating gadolinium nitride thin films
- Abschlussarbeit im Masterstudiengang Physik (Physik der kondensierten Materie)
- Themensteller(in): Rudolf Gross
- Growth and piezoelectric properties of scandium-doped Aluminum nitride thin films
- Abschlussarbeit im Bachelorstudiengang Physik
- Themensteller(in): Rudolf Gross