Prof. Dr. rer. nat. Dr. rer. nat. habil. Rudolf Gross

Photo von Prof. Dr. rer. nat. habil. Rudolf Gross.
+49 89 289-14201
Visitenkarte in TUMonline
Technische Physik
Professur für Technische Physik
nach Vereinbarung

Lehrveranstaltungen und Termine

Titel und Modulzuordnung
Physik der kondensierten Materie 1
Zuordnung zu Modulen:
VO 4 Gross, R. Hübl, H. Di, 12:00–14:00, PH HS2
Do, 10:00–12:00, PH HS2
Supraleitung und Tieftemperaturphysik 1
Zuordnung zu Modulen:
VO 2 Hackl, R.
Leitung/Koordination: Gross, R.
Do, 12:00–14:00, PH HS3
Fortschritte in der Festkörperphysik
Zuordnung zu Modulen:
PS 2 Gross, R. Di, 10:15–11:30
Supraleitende Quantenschaltkreise
Zuordnung zu Modulen:
PS 2 Deppe, F. Fedorov, K. Marx, A.
Leitung/Koordination: Gross, R.
Di, 14:30–16:00
Übung zu Physik der kondensierten Materie 1
Zuordnung zu Modulen:
UE 2 Geprägs, S.
Leitung/Koordination: Gross, R.
Termine in Gruppen
Übung zu Supraleitung und Tieftemperaturphysik 1
Zuordnung zu Modulen:
UE 2 Gross, R. Hackl, R. Termine in Gruppen
Zuordnung zu Modulen:
KO 2 Gross, R. Do, 17:00–19:00, PH HS3
Walther-Meißner-Seminar über aktuelle Fragestellungen der Tieftemperatur-Festkörperphysik
Zuordnung zu Modulen:
SE 2 Gross, R. Fr, 13:30–14:45

Ausgeschriebene Angebote für Abschlussarbeiten

Engineering Magnetization Dynamics in a Magnetic Insulator

In magnetic resonance, a high frequency magnetic drive field is employed to excite the precessional motion of the magnetization of a magnet. Besides this fundamental excitation, where all spins are precessing in an orchestrated, collective motion, higher order magnetic resonance modes can be excited and investigated using broadband microwave spectroscopy techniques. Furthermore, as these properties rely on the „magnetic“ bandstructure of the material, they can also be tailored using nano-fabrication methods yielding engineered magnetic structures such as waveguides or resonators.

We are looking for a talented master student, who is eager to explore the different possibilities for tailoring the dynamic magnetic properties of yttrium iron garnet (YIG). The goal of your thesis is to design, fabricate and investigate tailored magnetic bandstructures in YIG, in particular also in freely suspended films. The thesis work involves simulation of the (magnetic) structures, advanced nano-patterning, as well as high frequency spectroscopy of the fabricated devices.


geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Rudolf Gross
Magnetische Quantenoszillationen in dem antiferromagnetischen Supraleiter kappa-(BETS)2FeBr4

One of the challenging goals in modern materials science is the rational design of multifunctional molecular compounds that combine technologically useful features such as electrical conductivity and magnetism. A promising strategy is to create hybrid organic/inorganic crystals comprising two functional sublattices exhibiting distinct properties. Recently, several compounds have been synthesized in which the metallic conductivity is provided by organic layers sandwiched between inorganic layers responsible for magnetic ordering. The goal of the present Master thesis is to inverstigate the interplay between the magnetic and conducting subsystems in the organic superconductor k-(BETS)2FeBr4 in vicinity of the antiferromagnetic quantum phase transition. Quantum oscillations of magnetization and interlayer resistivity in strong magnetic fields will be used to probe the electronic properties of this material.

Techniques: Strong magnetic fields; magnetotransport; magnetic torque; cryogenic (liquid 4He and 3He) techniques.

Physics: Electronic correlations; magnetic quantum oscillations; antiferromagnetism.


geeignet als
  • Masterarbeit Physik der kondensierten Materie
Themensteller(in): Rudolf Gross
Pufferschichten für technische Leiter auf der Basis von Hochtemperatur-Supraleitern

The fabrication of ReBa2Cu3O7-δ (Re: rare earth element) (ReBCO) high temperature superconductor (HTS) based coated conductors requires the development of buffer layers (intermediate layers between a metal tape and a  superconductor). These buffer layers have to fulfill a list of requirements among which are chemical stability and  compatibility with adjacent films. Inclined substrate deposited MgO, developed by THEVA, is used as incident buffer  layer, because it creates a texture on metal substrate for the growth of HTS film and serves as a diffusion barrier for substrate elements. However, MgO is a hygroscopic material and has a high lattice mismatch with HTS, and therefore creates some technical issues for the consecutive deposition process. LaMnO3 is a perspective candidate as a terminal buffer layer due to its compatibility with MgO surfaces and is expected to provide a good template for growing ReBCO.

Depending on your qualification, following tasks will be performed during your work:
• Optimization of LaMnO3 deposition parameters
• Structural and compositional analysis (XRD, SEM, EDS, ICP)
• Deposition of GdBa2Cu3O7-δ HTS films on LaMnO3 buffered substrates
• Analysis of superconducting properties of the HTS films (Ic, Tc)

The experimental work of the master/bachelor thesis will be performed at THEVA GmbH, Ismaning. THEVA GmbH is an international, medium-sized high-tech company in the area of superconducting technology and special-purpose  systems for vacuum coating technology. For more than two decades THEVA has been developing process technologies for the manufacture of high temperature superconductors for power transmission and power  engineering. In our pilot production facility in Ismaning near Munich, we manufacture and distribute superconductors with a high power density.

Please send your application via e-mail with keywords "LMO bachelor" or "LMO master" to:
THEVA Dünnschichttechnik GmbH
Oleksiy Troshyn
Rote-Kreuz-Str. 8, 85737 Ismaning,
Tel.: 089 923346 0, E-Mail:

geeignet als
  • Bachelorarbeit Physik
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Rudolf Gross

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.


Biologische Systeme, vom Protein bis hin zu lebenden Zellen und deren Verbänden, gehorchen physikalischen Prinzipien. Unser Forschungsbereich Biophysik ist deutschlandweit einer der größten Zusammenschlüsse in diesem Bereich.