de | en

Prof. Dr. Rudolf Gross

Photo von Prof. Dr. rer. nat. habil. Rudolf Gross.
Phone
+49 89 289-14249
Room
E-Mail
rudolf.gross@tum.de
Links
Homepage
Page in TUMonline
Group
Technical Physics
Job Title
Professorship on Technical Physics
Consultation Hour
on appointment

Courses and Dates

Title and Module Assignment
ArtSWSLecturer(s)Dates
Applied Superconductivity: Josephson Effects, Superconducting Quantum Circuits, and Microwave Quantum Optics
eLearning course course documents virtual lecture hall
Assigned to modules:
VO 4 Fedorov, K. Gross, R. Mon, 14:15–15:45, WMI 143
Wed, 14:15–15:45, WMI 143
Condensed Matter Physics 2
Assigned to modules:
VO 4 Filipp, S. Gross, R. Mon, 10:00–11:30
Mon, 12:15–14:00
Tue, 08:30–10:00
Tue, 12:00–14:00
Superconductivity and Low Temperature Physics 2
eLearning course course documents virtual lecture hall
Assigned to modules:
VO 2 Deppe, F. Gross, R. Thu, 12:00–14:00, virtuell
Advances in Solid State Physics
course documents virtual lecture hall
Assigned to modules:
PS 2 Deppe, F. Gross, R. Hübl, H. Tue, 10:15–11:45, virtuell
and singular or moved dates
Summer Academy Sarntal, Course 3 "Physics and Electronics in Everyday Life"
course documents
Assigned to modules:
PS 4 Gross, R.
Spin Currents and Skyrmionics
eLearning course
Assigned to modules:
PS 2 Gross, R. Hübl, H.
Assisstants: Althammer, M.Geprägs, S.Opel, M.
Thu, 14:00–15:30, virtuell
Superconducting Quantum Circuits
course documents virtual lecture hall
Assigned to modules:
PS 2 Deppe, F. Filipp, S. Gross, R.
Assisstants: Fedorov, K.Marx, A.
Tue, 14:30–16:00, virtuell
Exercise to Applied Superconductivity: Josephson Effects, Superconducting Quantum Circuits, and Microwave Quantum Optics
course documents
Assigned to modules:
UE 2 Fedorov, K. Gross, R. dates in groups
Exercise to Condensed Matter Physics 2
Assigned to modules:
UE 2
Responsible/Coordination: Gross, R.
Tutorial to Superconductivity and Low Temperature Physics 2
eLearning course course documents
Assigned to modules:
UE 2
Responsible/Coordination: Gross, R.
dates in groups
Tutorial to Condensed Matter Physics 2
course documents
Assigned to modules:
UE 1 Gross, R. Wed, 10:00–12:00
Colloquium on Solid State Physics
current information
Assigned to modules:
KO 2 Gross, R. Thu, 17:00–19:00, virtuell
FOPRA Experiment 16: Josephson Effects in Superconductors
current information
Assigned to modules:
PR 1 Gross, R.
Assisstants: Chen, Q.Nojiri, Y.
Walther-Meißner-Seminar on Topical Problems of Low Temperature Physics
current information
Assigned to modules:
SE 2 Filipp, S. Gross, R. Fri, 11:00–12:30, WMI 143
and singular or moved dates

Offered Bachelor’s or Master’s Theses Topics

Fabrication of a superconducting coplanar transmission line for efficient coupling to rare earth spin ensembles
The rare earth spin ensembles are well established by now in the optical domain where the microwave states are used as an intermediate state to extend the storage time [1]. Number of purely microwave manipulations by spin ensembles is very limited and is bound to coupling of spin ensembles to microwave resonating structures [2], which allows amplifying the microwave signal and enhancing the interaction between the ions and the microwave field. The main disadvantage of using these resonating structures is their fixed frequencies and very small tuning range. Typically fabricated in a coplanar design, the superconducting resonators create strongly inhomogeneous distribution of the field within the spin ensemble, which results into largely detuned Rabi frequencies experienced by the spins. Aim of this project is to fabricate novel design of microwave transmission line, which will allow for homogeneous distribution of the microwave field within the excited rare-earth spin ensemble, and at the same time, will not be bound to a specific frequency. This will allow realizing various spin manipulation schemes, which involve more than two energy levels (beyond Hahn-echo) and thus deploy complex spin-manipulation techniques. We are looking for a highly motivated master student joining this project. Within the project, you will gain hands-on experience on design and fabrication of superconducting microwave structures. You will design and fabricate superconducting transmission line, which will then be tested at cryogenic conditions when coupled to rare earth spins ensembles. [1] Kinos, A. et al. Roadmap for Rare-earth Quantum Computing. arXiv 2103.15743 (2021). [2] Ranjan, V. et al. Multimode Storage of Quantum Microwave Fields in Electron Spins over 100 ms. https://link.aps.org/doi/10.1103/PhysRevLett.125.210505 (2021).
suitable as
  • Master’s Thesis Condensed Matter Physics
Supervisor: Rudolf Gross
Fabrication of a superconducting coplanar transmission line for efficient coupling to rare earth spin ensembles
The rare earth spin ensembles are well established by now in the optical domain where the microwave states are used as an intermediate state to extend the storage time [1]. Number of purely microwave manipulations by spin ensembles is very limited and is bound to coupling of spin ensembles to microwave resonating structures [2], which allows amplifying the microwave signal and enhancing the interaction between the ions and the microwave field. The main disadvantage of using these resonating structures is their fixed frequencies and very small tuning range. Typically fabricated in a coplanar design, the superconducting resonators create strongly inhomogeneous distribution of the field within the spin ensemble, which results into largely detuned Rabi frequencies experienced by the spins. Aim of this project is to fabricate novel design of microwave transmission line, which will allow for homogeneous distribution of the microwave field within the excited rare-earth spin ensemble, and at the same time, will not be bound to a specific frequency. This will allow realizing various spin manipulation schemes, which involve more than two energy levels (beyond Hahn-echo) and thus deploy complex spin-manipulation techniques. We are looking for a highly motivated master student joining this project. Within the project, you will gain hands-on experience on design and fabrication of superconducting microwave structures. You will design and fabricate superconducting transmission line, which will then be tested at cryogenic conditions when coupled to rare earth spins ensembles. [1] Kinos, A. et al. Roadmap for Rare-earth Quantum Computing. arXiv 2103.15743 (2021). [2] Ranjan, V. et al. Multimode Storage of Quantum Microwave Fields in Electron Spins over 100 ms. https://link.aps.org/doi/10.1103/PhysRevLett.125.210505 (2021).
suitable as
  • Master’s Thesis Quantum Science & Technology
Supervisor: Rudolf Gross
Fabrication of a superconducting coplanar transmission line for efficient coupling to rare earth spin ensembles
The rare earth spin ensembles are well established by now in the optical domain where the microwave states are used as an intermediate state to extend the storage time [1]. Number of purely microwave manipulations by spin ensembles is very limited and is bound to coupling of spin ensembles to microwave resonating structures [2], which allows amplifying the microwave signal and enhancing the interaction between the ions and the microwave field. The main disadvantage of using these resonating structures is their fixed frequencies and very small tuning range. Typically fabricated in a coplanar design, the superconducting resonators create strongly inhomogeneous distribution of the field within the spin ensemble, which results into largely detuned Rabi frequencies experienced by the spins. Aim of this project is to fabricate novel design of microwave transmission line, which will allow for homogeneous distribution of the microwave field within the excited rare-earth spin ensemble, and at the same time, will not be bound to a specific frequency. This will allow realizing various spin manipulation schemes, which involve more than two energy levels (beyond Hahn-echo) and thus deploy complex spin-manipulation techniques. We are looking for a highly motivated master student joining this project. Within the project, you will gain hands-on experience on design and fabrication of superconducting microwave structures. You will design and fabricate superconducting transmission line, which will then be tested at cryogenic conditions when coupled to rare earth spins ensembles. [1] Kinos, A. et al. Roadmap for Rare-earth Quantum Computing. arXiv 2103.15743 (2021). [2] Ranjan, V. et al. Multimode Storage of Quantum Microwave Fields in Electron Spins over 100 ms. https://link.aps.org/doi/10.1103/PhysRevLett.125.210505 (2021).
suitable as
  • Master’s Thesis Applied and Engineering Physics
Supervisor: Rudolf Gross
Fabrication of a superconducting transmission line resonator in a bad-cavity limit
The rare earth spin ensembles are well established by now in the optical domain where the microwave states are used as an intermediate state to extend the storage time [1]. Number of purely microwave manipulations by spin ensembles is very limited and is bound to coupling of spin ensembles to microwave resonating structures [2], which allows amplifying the microwave signal and enhancing the interaction between the ions and the microwave field. The main disadvantage of using these resonating structures is their fixed frequencies and very small tuning range. Typically fabricated in a coplanar design, the superconducting resonators create strongly inhomogeneous distribution of the field within the spin ensemble, which results into largely detuned Rabi frequencies experienced by the spins. Aim of this project is to fabricate novel design of microwave transmission line resonator, which would work in a bad-cavity regime and will thus allow to couple to rare-earth spins at a larger badwidth. This will allow realizing various spin manipulation schemes, which involve more than two energy levels (beyond Hahn-echo) and thus deploy complex spin-manipulation techniques. We are looking for a highly motivated master student joining this project. Within the project, you will gain hands-on experience on design and fabrication of superconducting microwave structures. You will design and fabricate superconducting resonating structure, which will then be tested at cryogenic conditions when coupled to rare earth spins ensembles. [1] Kinos, A. et al. Roadmap for Rare-earth Quantum Computing. arXiv 2103.15743 (2021). [2] Ranjan, V. et al. Multimode Storage of Quantum Microwave Fields in Electron Spins over 100 ms. https://link.aps.org/doi/10.1103/PhysRevLett.125.210505 (2021).
suitable as
  • Master’s Thesis Quantum Science & Technology
Supervisor: Rudolf Gross
Fabrication of a superconducting transmission line resonator in a bad-cavity limit
The rare earth spin ensembles are well established by now in the optical domain where the microwave states are used as an intermediate state to extend the storage time [1]. Number of purely microwave manipulations by spin ensembles is very limited and is bound to coupling of spin ensembles to microwave resonating structures [2], which allows amplifying the microwave signal and enhancing the interaction between the ions and the microwave field. The main disadvantage of using these resonating structures is their fixed frequencies and very small tuning range. Typically fabricated in a coplanar design, the superconducting resonators create strongly inhomogeneous distribution of the field within the spin ensemble, which results into largely detuned Rabi frequencies experienced by the spins. Aim of this project is to fabricate novel design of microwave transmission line resonator, which would work in a bad-cavity regime and will thus allow to couple to rare-earth spins at a larger badwidth. This will allow realizing various spin manipulation schemes, which involve more than two energy levels (beyond Hahn-echo) and thus deploy complex spin-manipulation techniques. We are looking for a highly motivated master student joining this project. Within the project, you will gain hands-on experience on design and fabrication of superconducting microwave structures. You will design and fabricate superconducting resonating structure, which will then be tested at cryogenic conditions when coupled to rare earth spins ensembles. [1] Kinos, A. et al. Roadmap for Rare-earth Quantum Computing. arXiv 2103.15743 (2021). [2] Ranjan, V. et al. Multimode Storage of Quantum Microwave Fields in Electron Spins over 100 ms. https://link.aps.org/doi/10.1103/PhysRevLett.125.210505 (2021).
suitable as
  • Master’s Thesis Applied and Engineering Physics
Supervisor: Rudolf Gross
Fabrication of a superconducting transmission line resonator in a bad-cavity limit
The rare earth spin ensembles are well established by now in the optical domain where the microwave states are used as an intermediate state to extend the storage time [1]. Number of purely microwave manipulations by spin ensembles is very limited and is bound to coupling of spin ensembles to microwave resonating structures [2], which allows amplifying the microwave signal and enhancing the interaction between the ions and the microwave field. The main disadvantage of using these resonating structures is their fixed frequencies and very small tuning range. Typically fabricated in a coplanar design, the superconducting resonators create strongly inhomogeneous distribution of the field within the spin ensemble, which results into largely detuned Rabi frequencies experienced by the spins. Aim of this project is to fabricate novel design of microwave transmission line resonator, which would work in a bad-cavity regime and will thus allow to couple to rare-earth spins at a larger badwidth. This will allow realizing various spin manipulation schemes, which involve more than two energy levels (beyond Hahn-echo) and thus deploy complex spin-manipulation techniques. We are looking for a highly motivated master student joining this project. Within the project, you will gain hands-on experience on design and fabrication of superconducting microwave structures. You will design and fabricate superconducting resonating structure, which will then be tested at cryogenic conditions when coupled to rare earth spins ensembles. [1] Kinos, A. et al. Roadmap for Rare-earth Quantum Computing. arXiv 2103.15743 (2021). [2] Ranjan, V. et al. Multimode Storage of Quantum Microwave Fields in Electron Spins over 100 ms. https://link.aps.org/doi/10.1103/PhysRevLett.125.210505 (2021).
suitable as
  • Master’s Thesis Condensed Matter Physics
Supervisor: Rudolf Gross
Fabrication of low-loss Josephson parametric devices
Superconducting Josephson devices represent one of the leading hardware platforms of modern quantum information processing. In particular, these devices often employ nonlinear parametric effects for tunable coupling schemes or quantum-limited amplification. Such effects can be also used in a multitude of quantum communication & sensing protocols. In this context, a particular challenge arises due to the fundamental requirement for minimizing losses in superconducting systems in order to preserve the fragile quantum nature of related microwave states. To this end, one needs to develop advanced routines for fabrication of low-loss Josephson parametric amplifiers & parametric couplers by exploring various surface treatment approaches or studying novel superconducting materials. The low-loss Josephson devices are to be used in our ongoing experiments towards experimental investigation of particular novel concepts, such as the quantum radar or remote entanglement distribution protocols. This master thesis will involve designing superconducting parametric circuits, cleanroom fabrication, and characterization measurements of fabricated devices with an aim to employ these in microwave quantum communication & sensing experiments.
suitable as
  • Master’s Thesis Applied and Engineering Physics
Supervisor: Rudolf Gross
Fabrication of low-loss Josephson parametric devices
Superconducting Josephson devices represent one of the leading hardware platforms of modern quantum information processing. In particular, these devices often employ nonlinear parametric effects for tunable coupling schemes or quantum-limited amplification. Such effects can be also used in a multitude of quantum communication & sensing protocols. In this context, a particular challenge arises due to the fundamental requirement for minimizing losses in superconducting systems in order to preserve the fragile quantum nature of related microwave states. To this end, one needs to develop advanced routines for fabrication of low-loss Josephson parametric amplifiers & parametric couplers by exploring various surface treatment approaches or studying novel superconducting materials. The low-loss Josephson devices are to be used in our ongoing experiments towards experimental investigation of particular novel concepts, such as the quantum radar or remote entanglement distribution protocols. This master thesis will involve designing superconducting parametric circuits, cleanroom fabrication, and characterization measurements of fabricated devices with an aim to employ these in microwave quantum communication & sensing experiments.
suitable as
  • Master’s Thesis Condensed Matter Physics
Supervisor: Rudolf Gross
Fabrication of low-loss Josephson parametric devices
Superconducting Josephson devices represent one of the leading hardware platforms of modern quantum information processing. In particular, these devices often employ nonlinear parametric effects for tunable coupling schemes or quantum-limited amplification. Such effects can be also used in a multitude of quantum communication & sensing protocols. In this context, a particular challenge arises due to the fundamental requirement for minimizing losses in superconducting systems in order to preserve the fragile quantum nature of related microwave states. To this end, one needs to develop advanced routines for fabrication of low-loss Josephson parametric amplifiers & parametric couplers by exploring various surface treatment approaches or studying novel superconducting materials. The low-loss Josephson devices are to be used in our ongoing experiments towards experimental investigation of particular novel concepts, such as the quantum radar or remote entanglement distribution protocols. This master thesis will involve designing superconducting parametric circuits, cleanroom fabrication, and characterization measurements of fabricated devices with an aim to employ these in microwave quantum communication & sensing experiments.
suitable as
  • Master’s Thesis Quantum Science & Technology
Supervisor: Rudolf Gross
Hybrid quantum teleportation
Microwave quantum communication is a novel field of science and technology, where one exploits quantum properties of propagating microwave signals to achieve quantum advantage in various communication scenarios. Here, a particularly important protocol is quantum teleportation, where one bypasses fundamental limitations on fidelity of transferred quantum states by exploiting shared entanglement. In this context, an open challenge is teleportation of the most exotic, non-Gaussian, quantum states, such as Fock or Schrödinger cat states, with the help of Gaussian entangled states. In theory, this problem can be addressed by using non-deterministic approaches or incorporating non-Gaussian operations in the teleportation protocol. This master thesis will focus on a theory analysis & numerical simulation of quantum microwave teleportation of non-Gaussian quantum states. Later stages of this master project may include experimental investigation of proof-of-principle hybrid quantum teleportation protocols based on superconducting quantum circuits in the cryogenic environment.
suitable as
  • Master’s Thesis Applied and Engineering Physics
Supervisor: Rudolf Gross
Hybrid quantum teleportation
Microwave quantum communication is a novel field of science and technology, where one exploits quantum properties of propagating microwave signals to achieve quantum advantage in various communication scenarios. Here, a particularly important protocol is quantum teleportation, where one bypasses fundamental limitations on fidelity of transferred quantum states by exploiting shared entanglement. In this context, an open challenge is teleportation of the most exotic, non-Gaussian, quantum states, such as Fock or Schrödinger cat states, with the help of Gaussian entangled states. In theory, this problem can be addressed by using non-deterministic approaches or incorporating non-Gaussian operations in the teleportation protocol. This master thesis will focus on a theory analysis & numerical simulation of quantum microwave teleportation of non-Gaussian quantum states. Later stages of this master project may include experimental investigation of proof-of-principle hybrid quantum teleportation protocols based on superconducting quantum circuits in the cryogenic environment.
suitable as
  • Master’s Thesis Quantum Science & Technology
Supervisor: Rudolf Gross
Josephson Ring Modulator Coupler Measurement
Adiabatic Quantum Computation aims at finding the solution for optimization problems by adiabatic Hamiltonian evolution. Physically, the problems are encoded in the so-called Ising Hamiltonian and the task is to find the state of lowest energy, the ground state. As can be seen in the Ising Hamiltonian, all spins have to interact with all other spins to be able to deal with general optimization problems. In practice, achieving this all-to-all connectivity is a hard task. A particularly promising approach is the so-called Lechner-Hauke-Zoller architecture, which we want to implement with superconducting circuits. There, one of the fundamental building block is a Josephson ring modulator coupler featuring the strong ZZ interaction. Your task will be the experimental characterization of the JRM coupler. You will analyze the ZZ interaction strength in the on-state and the parasitic cross-talk between the qubits in the off-state of the coupler. Ultimately, you will realize a simple quantum annealing protocol.
suitable as
  • Master’s Thesis Condensed Matter Physics
Supervisor: Rudolf Gross
Josephson Ring Modulator Coupler Measurement
Adiabatic Quantum Computation aims at finding the solution for optimization problems by adiabatic Hamiltonian evolution. Physically, the problems are encoded in the so-called Ising Hamiltonian and the task is to find the state of lowest energy, the ground state. As can be seen in the Ising Hamiltonian, all spins have to interact with all other spins to be able to deal with general optimization problems. In practice, achieving this all-to-all connectivity is a hard task. A particularly promising approach is the so-called Lechner-Hauke-Zoller architecture, which we want to implement with superconducting circuits. There, one of the fundamental building block is a Josephson ring modulator coupler featuring the strong ZZ interaction. Your task will be the experimental characterization of the JRM coupler. You will analyze the ZZ interaction strength in the on-state and the parasitic cross-talk between the qubits in the off-state of the coupler. Ultimately, you will realize a simple quantum annealing protocol.
suitable as
  • Master’s Thesis Quantum Science & Technology
Supervisor: Rudolf Gross
Microwave cryptography with propagating quantum tokens
Quantum cryptography based on continuous-variables is a rapidly growing field of fundamental and applied research. It deals with various topics regarding fundamental limits on data communication & security. In particular, the microwave branch of quantum cryptography demonstrates a large potential for near term applications due to its natural frequency compatibility with the upcoming 5G and future 6G networks. In this context, we plan to investigate microwave photonic states, quantum tokens, which can be used for unconditionally secure storage and transfer of classical information. This security properties are provided by a peculiar combination of the quantum no-cloning theorem and vacuum squeezing phenomenon. The latter effect can be routinely achieved in the microwave regime with superconducting Josephson parametric amplifiers, which we plan to use for experimental generation & investigation of quantum token states. This master thesis will focus on developing numerical & experimental tools for the ongoing microwave quantum cryptography experiments. This includes programming various elements of FPGA data processing routines, performing cryogenic measurements with propagating microwaves, and analyzing measurement data for quantifying quantum correlations & unconditional security in propagating quantum token states.
suitable as
  • Master’s Thesis Applied and Engineering Physics
Supervisor: Rudolf Gross
Microwave cryptography with propagating quantum tokens
Quantum cryptography based on continuous-variables is a rapidly growing field of fundamental and applied research. It deals with various topics regarding fundamental limits on data communication & security. In particular, the microwave branch of quantum cryptography demonstrates a large potential for near term applications due to its natural frequency compatibility with the upcoming 5G and future 6G networks. In this context, we plan to investigate microwave photonic states, quantum tokens, which can be used for unconditionally secure storage and transfer of classical information. This security properties are provided by a peculiar combination of the quantum no-cloning theorem and vacuum squeezing phenomenon. The latter effect can be routinely achieved in the microwave regime with superconducting Josephson parametric amplifiers, which we plan to use for experimental generation & investigation of quantum token states. This master thesis will focus on developing numerical & experimental tools for the ongoing microwave quantum cryptography experiments. This includes programming various elements of FPGA data processing routines, performing cryogenic measurements with propagating microwaves, and analyzing measurement data for quantifying quantum correlations & unconditional security in propagating quantum token states.
suitable as
  • Master’s Thesis Quantum Science & Technology
Supervisor: Rudolf Gross
Observation of quantum switching in driven-dissipative superconducting oscillators
Classical nonlinear systems are known to exhibit metastable behaviour, where spontaneous transitions may take place. These transitions are often associated with spontaneous symmetry breaking and can be viewed as classical phase transitions. However, recent developments in quantum theory of driven-dissipative nonlinear resonators reveal that the underlying switching processes may be of purely quantum nature. This can be experimentally observed during the transient dynamics in nonlinear superconducting resonators. An immediate goal of this master project is to experimentally study switching dynamics in driven Josephson parametric amplifiers (JPAs) and observe quantum features, such as vacuum squeezing and Wigner function negativity, in the associated transient resonator states. The far-reaching goals of this research are related to fundamental investigation of quantum phase transitions in novel driven-dissipative superconducting systems, such as quantum metamaterials. In the framework of this project, the student will experimentally employ existing JPA devices as both the driven-dissipative system and quantum preamplifiers. The latter will be the key for efficient observation and quantum tomography of the transient JPA dynamics. More specifically, the tasks of the master student will consist of the FPGA programming, construction of an experimental set-up in a dilution refrigerator, cryogenic microwave measurements, and data analysis in collaboration with external theory partners. This project will be an important integral part of our various activities on quantum microwave communication, where JPAs are employed as the key building blocks. These activities are supported within the framework of the MCQST cluster, QMiCS project (EU Quantum Flagship), QuaMToMe project (BMBF, "Grand Challenge der Quantenkommunikation"), and will also have a significant overlap with the QuaRaTe project (BMBF) on quantum sensing.
suitable as
  • Master’s Thesis Quantum Science & Technology
Supervisor: Rudolf Gross
Observation of quantum switching in driven-dissipative superconducting oscillators
Classical nonlinear systems are known to exhibit metastable behaviour, where spontaneous transitions may take place. These transitions are often associated with spontaneous symmetry breaking and can be viewed as classical phase transitions. However, recent developments in quantum theory of driven-dissipative nonlinear resonators reveal that the underlying switching processes may be of purely quantum nature. This can be experimentally observed during the transient dynamics in nonlinear superconducting resonators. An immediate goal of this master project is to experimentally study switching dynamics in driven Josephson parametric amplifiers (JPAs) and observe quantum features, such as vacuum squeezing and Wigner function negativity, in the associated transient resonator states. The far-reaching goals of this research are related to fundamental investigation of quantum phase transitions in novel driven-dissipative superconducting systems, such as quantum metamaterials. In the framework of this project, the student will experimentally employ existing JPA devices as both the driven-dissipative system and quantum preamplifiers. The latter will be the key for efficient observation and quantum tomography of the transient JPA dynamics. More specifically, the tasks of the master student will consist of the FPGA programming, construction of an experimental set-up in a dilution refrigerator, cryogenic microwave measurements, and data analysis in collaboration with external theory partners. This project will be an important integral part of our various activities on quantum microwave communication, where JPAs are employed as the key building blocks. These activities are supported within the framework of the MCQST cluster, QMiCS project (EU Quantum Flagship), QuaMToMe project (BMBF, "Grand Challenge der Quantenkommunikation"), and will also have a significant overlap with the QuaRaTe project (BMBF) on quantum sensing.
suitable as
  • Master’s Thesis Applied and Engineering Physics
Supervisor: Rudolf Gross
Remote entanglement of superconducting qubits
Quantum computing represents a promising information processing paradigm exploiting quantum properties, such as superposition and entanglement. The latter entity is crucial for achieving quantum advantage in scalable quantum information processing with distributed quantum computers, including those built with superconducting qubits. Here, an important task is to study how quantum entanglement can be distributed between remote superconducting qubits. To this end, we plan to exploit propagating two-mode squeezed states as a carrier of quantum entanglement. We intend to analyze their interactions with remote superconducting quantum bits in theory & verify our findings in experiments. This master thesis will first focus on theory & numerical simulations of remote entanglement of superconducting qubits with propagating squeezed light. Later project stages may also include cryogenic experiments with superconducting transmon qubits & Josephson parametric amplifiers towards verifying novel concepts of remote entanglement.
suitable as
  • Master’s Thesis Applied and Engineering Physics
Supervisor: Rudolf Gross
Remote entanglement of superconducting qubits
Quantum computing represents a promising information processing paradigm exploiting quantum properties, such as superposition and entanglement. The latter entity is crucial for achieving quantum advantage in scalable quantum information processing with distributed quantum computers, including those built with superconducting qubits. Here, an important task is to study how quantum entanglement can be distributed between remote superconducting qubits. To this end, we plan to exploit propagating two-mode squeezed states as a carrier of quantum entanglement. We intend to analyze their interactions with remote superconducting quantum bits in theory & verify our findings in experiments. This master thesis will first focus on theory & numerical simulations of remote entanglement of superconducting qubits with propagating squeezed light. Later project stages may also include cryogenic experiments with superconducting transmon qubits & Josephson parametric amplifiers towards verifying novel concepts of remote entanglement.
suitable as
  • Master’s Thesis Quantum Science & Technology
Supervisor: Rudolf Gross
Top of page