de | en

Technical Physics

Prof. Rudolf Gross, Prof. Stefan Filipp

Research Field

The research activities of the Walther-Meißner-Institute are focused on low temperature solid-state and condensed matter physics. The research program is devoted to both fundamental and applied research and also addresses materials science, thin film and nanotechnology aspects. With respect to basic research the main focus of the WMI is on

  • superconductivity and superfluidity,
  • magnetism, spin transport, and spin caloritronics,
  • quantum phenomena in mesoscopic systems and nanostructures,
  • quantum technology and quantum computing,
  • and the general properties of metallic systems at low and very low temperatures.

The WMI also conducts applied research in the fields of

  • solid-state quantum information processing systems,
  • superconducting and spintronic devices,
  • oxide electronics,
  • multi-functional and multiferroic materials,
  • and the development of low and ultra low temperature systems and techniques.

With respect to materials science, thin film and nanotechnology the research program is focused on

  • the synthesis of superconducting and magnetic materials,,
  • the single crystal growth of oxide materials,
  • the thin film technology of complex oxide heterostructures including multi-functional and multiferroic material systems,
  • the fabrication of superconducting, magnetic, and hybrid nanostructures,
  • and the growth of self-organized molecular ad-layers.

The WMI also develops and operates systems and techniques for low and ultra-low temperature experiments. A recent development are dry mK-systems that can be operated without liquid helium by using a pulse-tube refrigerator for precooling. Meanwhile, these systems have been successfully commercialized by the company VeriCold Technologies GmbH at Ismaning, Germany, which meanwhile has been acquired by Oxford Instruments. As further typical examples we mention a nuclear demagnetization cryostat for temperature down to below 100µK, or very flexible dilution refrigerator inserts for temperatures down to about 20mK fitting into a 2inch bore. These systems have been engineered and fabricated at the WMI. Within the last years, several dilution refrigerators have been provided to other research groups for various low temperature experiments. The WMI also operates a helium liquifier with a capacity of more than 150.000 liters per year and supplies both Munich universities with liquid helium. To optimize the transfer of liquid helium into transport containers the WMI has developed a pumping system for liquid helium that is commercialized in collaboration with a company.

Address/Contact

Walther-Meißner-Straße 8
85748 Garching b. München
+49 (89) 289 - 14202
Fax: +49 (89) 289 - 14206

Members of the Research Group

Professors

PhotoDegreeFirstnameLastnameRoomPhoneE-Mail
Photo von Prof. Dr. techn. Stefan Filipp. Prof. Dr. Stefan Filipp +49 89 289-14201 E-Mail
Photo von Prof. Dr. rer. nat. habil. Rudolf Gross. Prof. Dr. Rudolf Gross +49 89 289-14249 E-Mail

Office

PhotoDegreeFirstnameLastnameRoomPhoneE-Mail
kein Photo vorhanden Emel Dönertas +49 89 289-14202 E-Mail

Scientists

PhotoDegreeFirstnameLastnameRoomPhoneE-Mail
kein Photo vorhanden Dr. Matthias Althammer +49 89 289-14311 E-Mail
kein Photo vorhanden Edison Arguello E-Mail
kein Photo vorhanden M.Sc. Nicolas Arlt E-Mail
kein Photo vorhanden Daniil Bazulin E-Mail
kein Photo vorhanden M.Sc. Thomas Brenninger E-Mail
kein Photo vorhanden M.Sc. Jianpeng Chen E-Mail
Photo von Dr. rer. nat. Frank Deppe. PD Dr. Frank Deppe +49 89 289-14211 E-Mail
Photo von Dr. Andreas Erb. Dr. Andreas Erb +49 89 289-12642 E-Mail
kein Photo vorhanden M.Sc. Shamil Erkenov E-Mail
kein Photo vorhanden Dr. Kirill Fedorov +49 89 289-14222 E-Mail
Photo von Prof. Dr. techn. Stefan Filipp. Prof. Dr. Stefan Filipp +49 89 289-14201 E-Mail
kein Photo vorhanden M.Sc. Luis Flacke E-Mail
kein Photo vorhanden Stephan Geprägs +49 89 289-14225 E-Mail
kein Photo vorhanden B.Sc. Niklas Glaser E-Mail
kein Photo vorhanden M.Sc. Janine Gückelhorn E-Mail
kein Photo vorhanden Dieter Guratzsch +49 89 289-14438 E-Mail
kein Photo vorhanden Prof. Dr. Rudolf Hackl +49 89 289 14218 E-Mail
kein Photo vorhanden M.Sc. Maria-Teresa Handschuh E-Mail
kein Photo vorhanden M.Sc. Franz Haslbeck +49 89 289-12342 E-Mail
kein Photo vorhanden M.Sc. Kedar Honasoge E-Mail
kein Photo vorhanden B.Sc. Gerhard Huber E-Mail
Photo von Dr. rer. nat. Hans-Gregor Hübl. PD Dr. Hans-Gregor Hübl +49 89 289-14204 E-Mail
kein Photo vorhanden Sebastian Kammerer E-Mail
Photo von Dr. Mark Kartsovnik. Dr. Mark Kartsovnik +49 89 289-14223 E-Mail
kein Photo vorhanden M.Sc. Martin Knudsen E-Mail
kein Photo vorhanden Leon Koch +49 89 289-14221 E-Mail
kein Photo vorhanden M.Sc. Fabian Kronowetter E-Mail
kein Photo vorhanden Dr. Gleb Krylov E-Mail
kein Photo vorhanden Dr. Nadezhda Kukharchyk +49 89 289-14226 E-Mail
kein Photo vorhanden Dr. Klaus Liegener +49 89 289-14218 E-Mail
kein Photo vorhanden Dr. Achim Marx +49 89 289-14203 E-Mail
kein Photo vorhanden Yuki Nojiri +49 89 289-14519 E-Mail
kein Photo vorhanden M.Sc. Patricia Oehrl E-Mail
Photo von Dr. rer. nat. Matthias Opel. Dr. Matthias Opel +49 89 289-14237 E-Mail
kein Photo vorhanden Leander Peis E-Mail
kein Photo vorhanden M.Sc. Frederik Pfeiffer E-Mail
kein Photo vorhanden B.Sc. Michael Renger +49 89 289-14224 E-Mail
kein Photo vorhanden M.Sc. Lea Richard E-Mail
kein Photo vorhanden Joao Henrique Romeiro Alves E-Mail
kein Photo vorhanden Matthias Rottmann E-Mail
kein Photo vorhanden Malay Singh +49 89 289-14221 E-Mail
kein Photo vorhanden M.Sc. Ana Strinic E-Mail
kein Photo vorhanden Dr. Johneph Sukham +49 89 289-14210 E-Mail
kein Photo vorhanden M.Sc. Alexei Troshyn E-Mail
kein Photo vorhanden Ivan Tsitsilin +49 89 289-14224 E-Mail
kein Photo vorhanden Dr. Kurt Uhlig +49 89 289-14230 E-Mail
kein Photo vorhanden M.Sc. Florian Wallner E-Mail
kein Photo vorhanden M.Sc. Max Werninghaus E-Mail

Other Staff

PhotoDegreeFirstnameLastnameRoomPhoneE-Mail
kein Photo vorhanden Prof. Dr. Dietrich Einzel +49 89 289-14230 E-Mail
kein Photo vorhanden Astrid Habel E-Mail
Photo von Dipl.-Kffr. Martina Meven. Dipl.-Kffr. Martina Meven +49 89 289-14255 E-Mail
kein Photo vorhanden Andrea Person +49 89 289-14205 E-Mail
kein Photo vorhanden Carola Siegmayer +49 89 289-14216 E-Mail

Teaching

Course with Participations of Group Members

Titel und Modulzuordnung
ArtSWSDozent(en)Termine
Applied Superconductivity 1: from Josephson Effects to RSFQ Logic
LV-Unterlagen
Zuordnung zu Modulen:
VO 2 Gross, R. Mi, 14:15–15:45, WMI 143
Magnetism
eLearning-Kurs LV-Unterlagen
Zuordnung zu Modulen:
VO 2 Kukharchyk, N. Di, 14:00–15:30, WMI 143
QST Experiment: Quantum Hardware
Zuordnung zu Modulen:
VO 4 Filipp, S. Do, 16:00–18:00, PH HS1
Fr, 08:00–10:00, PH HS1
Quantum Sensing
eLearning-Kurs
Zuordnung zu Modulen:
VO 2 Brandt, M. Bucher, D. Hübl, H. Mi, 10:00–12:00, ZNN 0.001
Superconductivity and Low Temperature Physics 1
eLearning-Kurs LV-Unterlagen
Zuordnung zu Modulen:
VO 2 Gross, R. Do, 12:00–14:00, PH HS3
Fortschritte in der Festkörperphysik
LV-Unterlagen
Zuordnung zu Modulen:
PS 2 Gross, R. Di, 10:15–11:30, WMI 143
Quantum Entrepreneurship Laboratory
Zuordnung zu Modulen:
HS 2 Filipp, S. Mendl, C. Pollmann, F.
Mitwirkende: Cerda Sevilla, M.Trummer, C.
Spin Currents and Skyrmionics
eLearning-Kurs
Zuordnung zu Modulen:
PS 2 Hübl, H.
Mitwirkende: Althammer, M.Geprägs, S.Opel, M.
Do, 14:00–15:30, WMI 039
Supraleitende Quantenschaltkreise
LV-Unterlagen virtueller Hörsaal
Zuordnung zu Modulen:
PS 2 Deppe, F. Filipp, S.
Leitung/Koordination: Gross, R.
Mitwirkende: Fedorov, K.Marx, A.
Termine in Gruppen
Topical Issues in Magneto- and Spin Electronics
LV-Unterlagen
Zuordnung zu Modulen:
PS 2 Brandt, M. Hübl, H.
Mitwirkende: Althammer, M.Geprägs, S.
Mi, 11:30–13:00, WSI S101
Exercise to Applied Superconductivity 1: from Josephson Effects to RSFQ Logic
Zuordnung zu Modulen:
UE 2
Leitung/Koordination: Fedorov, K.
Termine in Gruppen
Exercise to Magnetism
eLearning-Kurs LV-Unterlagen
Zuordnung zu Modulen:
UE 1 Kukharchyk, N. Termine in Gruppen
Exercise to QST Experiment: Quantum Hardware
Zuordnung zu Modulen:
UE 2 Haslbeck, F. Wallner, F.
Leitung/Koordination: Filipp, S.
Termine in Gruppen
Übung zu Supraleitung und Tieftemperaturphysik 1
eLearning-Kurs LV-Unterlagen
Zuordnung zu Modulen:
UE 2 Gross, R. Termine in Gruppen
Festkörperkolloquium
aktuelle Informationen
Zuordnung zu Modulen:
KO 2 Gross, R. Do, 17:00–19:00, PH HS3
sowie einzelne oder verschobene Termine
FOPRA Experiment 104: The Josephson Parametric Amplifier (JPA) (QST-EX)
LV-Unterlagen
Zuordnung zu Modulen:
PR 1 Honasoge, K. Kronowetter, F.
Leitung/Koordination: Gross, R.
FOPRA Experiment 108: Qubit Control and Characterization for Superconducting Quantum Processors (AEP, KM, QST-EX)
LV-Unterlagen
Zuordnung zu Modulen:
PR 1 Tsitsilin, I. Wallner, F.
Leitung/Koordination: Filipp, S.
FOPRA Experiment 16: Josephson Effects in Superconductors (AEP, KM, QST-EX)
LV-Unterlagen aktuelle Informationen
Zuordnung zu Modulen:
PR 1 Honasoge, K. Kronowetter, F. Nojiri, Y.
Leitung/Koordination: Gross, R.
Journal Club on Quantum Systems
Zuordnung zu Modulen:
SE 2 Filipp, S. Mi, 09:00–11:00, WMI 143
Repetitorium zu Aktuelle Themen der Magneto- und Spinelektronik
Zuordnung zu Modulen:
RE 2
Leitung/Koordination: Hübl, H.
Repetitorium zu Fortschritte in der Festkörperphysik
Zuordnung zu Modulen:
RE 2
Leitung/Koordination: Gross, R.
Repetitorium zu Quanten-Entrepreneurship-Labor
Zuordnung zu Modulen:
RE 2
Leitung/Koordination: Filipp, S.
Repetitorium zu Spin-Ströme und Skyrmionik
Zuordnung zu Modulen:
RE 2
Leitung/Koordination: Hübl, H.
Repetitorium zu Supraleitende Quantenschaltkreise
Zuordnung zu Modulen:
RE 2
Leitung/Koordination: Gross, R.
Walther-Meißner-Seminar on Topical Problems of Low Temperature Physics
aktuelle Informationen
Zuordnung zu Modulen:
SE 2 Filipp, S. Gross, R. Termine in Gruppen

Offers for Theses in the Group

Lateral angular momentum transport by phonons
In a solid-state system, spin angular momentum is mediated by various (quasi-)particles. Among these excitations are phonons, which can carry angular momentum over mm distances. Most importantly, exchange of spin angular momentum from these crystal lattice vibrations to excitations of the magnetic lattice is possible via magneto-elastic coupling effects. This unlocks novel means for coherent and incoherent spin transport concepts without moving charges. Your thesis will be dedicated in assessing the realization of incoherent angular momentum transfer in nanostructured systems. In your thesis you will work on an all-electrical injection and detection scheme to access incoherent angular momentum transfer. You will use state-of-the-art nanofabrication techniques using electron beam lithography and thin film deposition machines for the realization of magnon-phonon hybrid devices. You will also gain experience in cryogenic magnetotransport techniques. You will develop automated evaluation tools and work on modelling the observed phenomena.
suitable as
  • Master’s Thesis Condensed Matter Physics
Supervisor: Rudolf Gross
Magnetic resonance spectroscopy in two dimensional ferromagnets
Dimensionality crucially influences the properties of materials. Two-dimensional (2d) van der Waals materials in the monolayer limit are presently heavily investigated. Within this class of materials systems with magnetic order exist, yet only limited insights have been obtained with respect to their magnetic excitation properties. A major experimental challenge is the small volume and thus low number of spins in these systems. Thus, high sensitivity techniques and large filling factors are key for successful studies of these materials. The goal of this thesis is to use planar superconducting resonators in combination with 2d van der Waals ferromagnets to study magnetic excitations at low temperatures by microwave spectroscopy. You will work on implementing the microwave-based spectroscopy of magnetic excitations in 2d systems. You will use state-of-the-art nanofabrication techniques like electron beam lithography and thin film deposition machines for the superconducting resonators. You will also gain experience in cryogenic microwave spectroscopy utilizing vector network analyzing techniques. Another important aspect will be the development of a quantitative model to illuminate the underlying physics of the magnetic excitations.
suitable as
  • Master’s Thesis Quantum Science & Technology
Supervisor: Rudolf Gross
Magnon-mechanics in suspended nano-structures
Nano-mechanical strings are archetypical harmonic oscillators and can be straightforwardly integrated with other nanoscale systems. For example, the field of nano-electromechanics studies the coupling of nano-strings to microwave circuits, which resulted in the creation of mechanical quantum states and concepts for microwave to optics conversion. Here, we plan to investigate an alternative hybrid system based on ferromagnetic nanostructures integrated with nano-strings or nano-mechanical platforms. These hybrid devices aim at the efficient conversion between phonons and magnons with the potential to interact with light and are thus ideal candidates for conversion applications. We are looking for a motivated master student for a nano-mechanical master thesis in the context of magnon-phonon interaction. The goal of your project is to investigate the static and dynamic interplay between the mechanical and magnetic properties of a nano-mechanical system sharing an interface with a magnetic layer. In your thesis project, you will fabricate freely suspended nanostructures based on magnetic thin films using state-of-the-art nano-lithography and deposition techniques. Further, you will probe the mechanical response of the nano-structures using optical interferometry while exciting the magnetization dynamics of the magnetic system.
suitable as
  • Master’s Thesis Quantum Science & Technology
Supervisor: Rudolf Gross
Magnon transport in laterally confined magnetic insulators
In antiferromagnetic insulators, we obtain two magnon modes with opposite spin chirality due to the two opposing magnetic sublattices. In this way, magnon transport in antiferromagnetic insulators can be considered as the magnonic equivalent of electronic spin transport in semiconductors and the properties can be mapped onto a magnonic pseudospin. At present, most experiments rely on extended epitaxial thin films of antiferromagnetic insulators. Your thesis will be dedicated to confine the lateral dimensions of the magnon transport channel. By conducting all-electrical magnon transport experiments, you will then determine the role of lateral confinement in such measurement schemes. You are interested in providing novel insights into pseudospin properties in antiferromagnetic insulators and provide a spark for theoretical descriptions. In order to answer questions regarding magnon transport in magnetic insulators, your thesis will contain aspects of the fabrication of nano-scale devices using electron beam lithography as well as ultra-sensitive low-noise electronic measurements at high magnetic fields in a cryogenic environment.
suitable as
  • Master’s Thesis Condensed Matter Physics
Supervisor: Rudolf Gross
Nano-electromechanics in the non-linear regime
Circuit nano-electromechanics is a new field in the overlap region between solid-state physics and quantum optics with the aim of probing quantum mechanics in macroscopic mechanical structures. We employ superconducting circuits to address fundamental questions like the preparation of phonon number states in the vibrational mode and the conversion of quantum states between the mechanical element and the microwave domain. The initial successful experiments of the group include hybrid devices based on nano-string resonators inductively coupled to frequency tunable microwave resonators. This setting allows to explore large optomechanical single photon rates, enables intrinsic amplification schemes, and hereby allows to access a new regime of light matter coupling. The goal of your thesis is the development and fabrication of hybrid devices based on frequency tunable superconducting microwave resonators with integrated nanomechanical string-resonators as well as their spectroscopy. This includes the design and fabrication of these devices, where you will use state-of-the-art simulation and nano-fabrication techniques. The second main aspect of your thesis is their investigation using highly sensitive microwave spectroscopy techniques in a low-temperature environment.
suitable as
  • Master’s Thesis Quantum Science & Technology
Supervisor: Rudolf Gross
Non-reciprocal magnonic devices

Spin waves (magnons) are the quantized excitations of the magnetic lattice in solid state systems. The field of magnonics is exploring concepts to use these magnons for information transport and processing. Of particular interest is to achieve non-reciprocity for opposite spin wave propagation directions, which can be realized in hybrid structures of a periodic artificial magnetic array on top of a magnonic waveguide. These systems would be potential candidates for compact microwave directional couplers and circulators operational at low temperatures. The goal of this thesis is to develop and optimize such nonreciprocal devices based on periodic magnetic arrays. This implementation is a first step towards compact low temperature microwave circuits relevant for superconducting quantum circuits.

You are a resourceful master student willing to contribute with your thesis towards the successful implementation of nonreciprocal microwave devices at cryogenic temperatures. You will use state-of-the-art nanofabrication techniques using electron beam lithography and thin film deposition machines to design your hybrid systems. You will also gain experience in cryogenic microwave spectroscopy utilizing vector network analyzing techniques. Utilizing a combination of numerical and analytical models, you will drive the optimization of such hybrid devices.

suitable as
  • Master’s Thesis Quantum Science & Technology
Supervisor: Rudolf Gross
Optical detection of magnetization dynamics at low temperatures
Utilizing magneto-optical effects enables the investigation of excitations in magnetic systems like magnons or spin waves down to the sub-micrometer scale. In this way, one can probe spin wave propagation in micro-patterned ferromagnetic materials, which is highly relevant for spintronic applications as well the investigation of tailored quantum systems. Especially at low temperatures, novel magnetic phases exist with intriguing magnetization dynamic properties. The goal of this thesis is the optical investigation of spatially resolved magnetization dynamics in spintronic devices as well as hybrid quantum systems at cryogenic temperatures. We are searching for a highly motivated master student to start the experiments on optically detected magnetization dynamics at cryogenic temperatures. You will improve the optical setup used for the detection of magnetization dynamics to increase the sensitivity. In addition, you will work with state-of-the-art microwave equipment to drive the magnetization dynamics in spintronic devices and hybrid systems. After assessing the performance of the setup with state-of-the-art magnetic systems, you will work in the clean room facilities of our institute to carry out the microfabrication steps to define your own spintronic devices or hybrid systems.
suitable as
  • Master’s Thesis Quantum Science & Technology
Supervisor: Rudolf Gross

Current and Finished Theses in the Group

Active Reset of Fluxonium Qubits
Abschlussarbeit im Bachelorstudiengang Physik
Themensteller(in): Stefan Filipp
CoxFe1-x thin films for future magnonic devices
Abschlussarbeit im Bachelorstudiengang Physik
Themensteller(in): Rudolf Gross
Energy exchange between spatially separated cryogenic rare-earth electronic spin ensembles
Abschlussarbeit im Austauschprogramm Physik (Master-Niveau, halbjährige Arbeit, 30 CP + 5 CP Kolloquium)
Themensteller(in): Rudolf Gross
Advanced calibration of superconducting qubits
Abschlussarbeit im Masterstudiengang Quantum Science & Technology
Themensteller(in): Stefan Filipp
Generating small magnetic fields inside an open-end magnetic shielding with a superconducting solenoid magnet
Abschlussarbeit im Masterstudiengang Physik (Physik der kondensierten Materie)
Themensteller(in): Rudolf Gross
Fabrikation und Charakterisierung planarer Mikrowellenresonatoren aus NbTiN bei tiefen Temperaturen
Abschlussarbeit im Bachelorstudiengang Physik
Themensteller(in): Hans-Gregor Hübl
Fabrication of a Superconducting Transmission Line in a Planar Design on a Spin-Doped Crystalline Membrane
Abschlussarbeit im Masterstudiengang Physik (Physik der kondensierten Materie)
Themensteller(in): Rudolf Gross
Magnetometry with NV centres in diamond - implementation of an optically detected magnetic resonance setup
Abschlussarbeit im Bachelorstudiengang Physik
Themensteller(in): Hans-Gregor Hübl
Magnon-Phonon Coupling in Symmetric Magneto-Metallic Thin Film/Bulk Acoustic Wave Resonator Heterostructures
Abschlussarbeit im Austauschprogramm Physik (Bachelor-Niveau, 12 CP + 3 CP Kolloquium)
Themensteller(in): Hans-Gregor Hübl
Mechanical properties of NbTiN nano-strings
Abschlussarbeit im Bachelorstudiengang Physik
Themensteller(in): Hans-Gregor Hübl
Microwave Manipulation of Magnon Transport and Spin Pumping
Abschlussarbeit im Masterstudiengang Physik (Physik der kondensierten Materie)
Themensteller(in): Rudolf Gross
Quench protection for a superconducting magnet
Abschlussarbeit im Bachelorstudiengang Physik
Themensteller(in): Rudolf Gross
Superconducting Microwave Resonators for Spin-Based Quantum Memories
Abschlussarbeit im Masterstudiengang Physics (Applied and Engineering Physics)
Themensteller(in): Hans-Gregor Hübl
Unidirectional Spin Wave Propagation in Magnetic Nanograting/Thin Film Heterostructures
Abschlussarbeit im Masterstudiengang Physik (Physik der kondensierten Materie)
Themensteller(in): Rudolf Gross
Thermal history dependent electronic properties of κ-(BEDT-TTF)2Cu[N(CN)2]X (X=Br,Cl) near the Mott-metal-insulator transition
Abschlussarbeit im Masterstudiengang Physik (Physik der kondensierten Materie)
Themensteller(in): Rudolf Gross
Growth optimization and magnetotransport properties of ferromagnetic insulating gadolinium nitride thin films
Abschlussarbeit im Masterstudiengang Physik (Physik der kondensierten Materie)
Themensteller(in): Rudolf Gross
Growth and piezoelectric properties of scandium-doped Aluminum nitride thin films
Abschlussarbeit im Bachelorstudiengang Physik
Themensteller(in): Rudolf Gross
Top of page