This website is no longer updated.

As of 1.10.2022, the Faculty of Physics has been merged into the TUM School of Natural Sciences with the website https://www.nat.tum.de/. For more information read Conversion of Websites.

de | en

Functional Materials

Prof. Peter Müller-Buschbaum

Research Field

We examine the physical fundamentals of material properties using scattering methods (neutrons-, x-ray and dynamic light scattering). The general goal of our research is to judge from the knowledge of the microscopic dynamics and structure for explaining the functional characteristics of condensed matter.

Address/Contact

James-Franck-Str. 1/I
85748 Garching b. München
+49 89 289 12452
Fax: +49 89 289 12473

Members of the Research Group

Professor

PhotoDegreeFirstnameLastnameRoomPhoneE-Mail
Photo von Prof. Dr. rer. nat. Peter Müller-Buschbaum. Prof. Dr. Peter Müller-Buschbaum 278 +49 89 289-12451 E-Mail

Office

PhotoDegreeFirstnameLastnameRoomPhoneE-Mail
Photo von Carola Kappauf. Carola Kappauf +49 89 289-14627 E-Mail
Photo von Marion Waletzki. Marion Waletzki 282 +49 89 289-12452 E-Mail

Scientists

PhotoDegreeFirstnameLastnameRoomPhoneE-Mail
Photo von Fabian Apfelbeck M.Sc.. M.Sc. Fabian Apfelbeck +49 89 289-12462 E-Mail
Photo von Yusuf Bulut M.Sc.. M.Sc. Yusuf Bulut E-Mail
Photo von Christopher Everett. M.Sc. Christopher Everett +49 89 289-12454 E-Mail
Photo von Marc Gensch. M.Sc. Marc Gensch E-Mail
Photo von Tianfu Guan. M.Sc. Tianfu Guan +49 89 289-12449 E-Mail
Photo von Renjun Guo M.Sc.. M.Sc. Renjun Guo E-Mail
Photo von Constantin Harder M.Sc.. M.Sc. Constantin Harder E-Mail
Photo von Julian Heger M.Sc.. M.Sc. Julian Heger +49 89 289-12455 E-Mail
Photo von Tobias Hölderle M.Sc.. M.Sc. Tobias Hölderle +49 89 289-14758 E-Mail
Photo von Linus Huber B.Sc. M.Sc.. M.Sc. Linus Huber +49 89 289-12461 E-Mail
Photo von Xinyu Jiang M.Sc.. M.Sc. Xinyu Jiang +49 89 289-12455 E-Mail
Photo von Xiongzhuo Jiang M.Sc.. M.Sc. Xiongzhuo Jiang +49 89 289-12457 E-Mail
Photo von Dr. rer. nat. Volker Körstgens. Dr. Volker Körstgens 287 +49 89 289-12456 E-Mail
Photo von Morgan Le Dü B.Sc.. M.Sc. Morgan Le Dü +49 89 289-12457 E-Mail
Photo von Nian Li. M.Sc. Nian Li +49 89 289-12449 E-Mail
Photo von Yanan Li. M.Eng. Yanan Li +49 89 289-12449 E-Mail
Photo von Zerui Li M.Sc.. M.Sc. Zerui Li +49 89 289-12461 E-Mail
Photo von Suzhe Liang M.Sc.. M.Sc. Suzhe Liang +49 89 289-12454 E-Mail
Photo von Yuxin Liang M.Sc.. M.Sc. Yuxin Liang +49 89 289-12462 E-Mail
Photo von Anna-Lena Oechsle M.Sc.. M.Sc. Anna-Lena Oechsle +49 89 289-12450 E-Mail
Photo von Guangjiu Pan. M.Sc. Guangjiu Pan +49 89 289-12462 E-Mail
Photo von Dominik Petz. M.Sc. Dominik Petz E-Mail
Photo von Thien An Pham M.Sc.. M.Sc. Thien An Pham E-Mail
Photo von Ivana Pivarnikova M.Sc.. M.Sc. Ivana Pivarnikova E-Mail
Photo von Lennart Reb M.Sc.. M.Sc. Lennart Reb +49 89 289-12455 E-Mail
Photo von Julija Reitenbach. M.Sc. Julija Reitenbach +49 89 289-12462 E-Mail
Photo von Manuel Scheel M.Sc.. M.Sc. Manuel Reus 755 +49 89 289-12450 E-Mail
Photo von Apl. Prof. Dr. rer. nat. habil. Walter Schirmacher. Prof. Dr. Walter Schirmacher +49 6131 39-24214 E-Mail
Photo von Dominik Schwaiger M.Sc.. M.Sc. Dominik Schwaiger +49 89 289-12453 E-Mail
Photo von Lukas Spanier M.Sc.. M.Sc. Lukas Spanier +49 89 289-12462 E-Mail
Photo von Kun Sun M.Sc.. M.Sc. Kun Sun +49 89 289-12462 E-Mail
Photo von Ting Tian. M.Eng. Ting Tian +49 89 289-12453 E-Mail
Photo von Suo Tu M.Sc.. M.Eng. Suo Tu +49 89 289-12450 E-Mail
Photo von Dr. rer. nat. Apostolos Vagias. Dr. Apostolos Vagias E-Mail
Photo von Peixi Wang. M.Eng. Peixi Wang +49 89 289-12474 E-Mail
Photo von Christian Weindl M.Sc.. M.Sc. Christian Weindl +49 89 289-12474 E-Mail
Photo von Tianxiao Xiao M.Sc.. M.Sc. Tianxiao Xiao +49 89 289-12449 E-Mail
Photo von Zhuijun Xu. Zhuijun Xu +49 89 289-12457 E-Mail
Photo von Yingying Yan M.Sc.. M.Sc. Yingying Yan +49 89 289-12457 E-Mail
Photo von Jinsheng Zhang M.Sc.. M.Sc. Jinsheng Zhang +49 89 289-12457 E-Mail
Photo von Tianle Zheng M.Sc.. M.Sc. Tianle Zheng +49 89 289-12461 E-Mail
Photo von Huaying Zhong M.Sc.. M.Sc. Huaying Zhong +49 89 289-12462 E-Mail
Photo von Yuqin Zou. M.Sc. Yuqin Zou +49 89 289-12454 E-Mail

Students

PhotoDegreeFirstnameLastnameRoomPhoneE-Mail
Photo von Emanuel Anwander B.Sc.. B.Sc. Emanuel Anwander +49 89 289-12457 E-Mail
Photo von Thomas Baier. B.Sc. Thomas Baier +49 89 289-12461 E-Mail
Photo von Debamitra Chakraborty. B.Sc. Debamitra Chakraborty E-Mail
Photo von Sebastian Coen B.Sc.. B.Sc. Sebastian Coen +49 89 289-12457 E-Mail
Photo von Jasper Ebel. Jasper Ebel +49 89 289-12457 E-Mail
Photo von Gokay Erbil B.Sc.. B.Sc. Gokay Erbil +49 89 289-12457 E-Mail
Photo von Felix Herschmann. Felix Herschmann E-Mail
Photo von David Paul Kosbahn B.Sc.. B.Sc. David Paul Kosbahn +49 89 289-12457 E-Mail
Photo von Ahmed Krifa B.Sc.. B.Sc. Ahmed Krifa +49 89 289-12457 E-Mail
Photo von Christoph Lindenmeir B.Sc.. B.Sc. Christoph Lindenmeir +49 89 289-12457 E-Mail
Photo von Augustin Lösch. Augustin Lösch E-Mail
Photo von Hsu Thazin Myint B.Sc.. B.Sc. Hsu Thazin Myint +49 89 289-12457 E-Mail
Photo von Simon Schiedeck. Simon Schiedeck E-Mail
Photo von Tobias Schöner B.Sc.. B.Sc. Tobias Schöner +49 89 289-12457 E-Mail
Photo von Henry Stock. Henry Stock E-Mail
Photo von Kexin Wu B.Sc.. B.Sc. Kexin Wu E-Mail

Other Staff

PhotoDegreeFirstnameLastnameRoomPhoneE-Mail
Photo von Reinhold Funer. Reinhold Funer 721 +49 89 289-12496 E-Mail
kein Photo vorhanden Josef Kaplonski 231 +49 89 289-12467 E-Mail
Photo von Prof. Dr. Winfried Petry. Prof. Dr. Winfried Petry +49 89 289-54704 E-Mail
Photo von Simon Jakob Schaper M.Sc.. M.Sc. Simon Jakob Schaper E-Mail
Photo von Tobias Widmann M.Sc.. M.Sc. Tobias Widmann E-Mail
Photo von Shanshan Yin. M.Eng. Shanshan Yin +49 89 289-12455 E-Mail

Teaching

Course with Participations of Group Members

Titel und Modulzuordnung
ArtSWSDozent(en)Termine
Nanostructured Soft Materials 1
eLearning-Kurs
Zuordnung zu Modulen:
VO 2 Müller-Buschbaum, P. Di, 15:00–16:30, PH 3734
Physics with Neutrons 1
eLearning-Kurs
Zuordnung zu Modulen:
VO 2 Petry, W.
Mitwirkende: Senyshyn, A.
Mi, 10:00–12:00, PH 2271
Polymer Physics 1
eLearning-Kurs LV-Unterlagen
Zuordnung zu Modulen:
VO 2 Müller-Buschbaum, P.
Mitwirkende: Körstgens, V.
Di, 10:00–12:00, virtuell
Seminar über Neutronen in Forschung und Industrie
aktuelle Informationen
Zuordnung zu Modulen:
PS 2 Märkisch, B. Morkel, C. Müller-Buschbaum, P.
Mitwirkende: Heiden-Hecht, T.Park, J.
Mo, 14:30–15:45, PH HS3
Exercise to Nanostructured Soft Materials 1
Zuordnung zu Modulen:
UE 2 Le Dü, M. Vagias, A.
Leitung/Koordination: Müller-Buschbaum, P.
Termine in Gruppen
Exercise to Physics with Neutrons 1
Zuordnung zu Modulen:
UE 2 Senyshyn, A.
Leitung/Koordination: Petry, W.
Termine in Gruppen
Exercise to Polymer Physics 1
eLearning-Kurs LV-Unterlagen
Zuordnung zu Modulen:
UE 2 Tian, T. Xiao, T.
Leitung/Koordination: Müller-Buschbaum, P.
Termine in Gruppen
Aktuelle Probleme der organischen Photovoltaik
Zuordnung zu Modulen:
SE 2 Müller-Buschbaum, P. Mo, 10:00–11:30, PH 3734
Dozentensprechstunde Polymerphysik 1
Zuordnung zu Modulen:
RE 2 Körstgens, V.
Leitung/Koordination: Müller-Buschbaum, P.
Termine in Gruppen
Edgar-Lüscher-Lehrerfortbildungs-Seminar "Physik von Klima und Wetter"
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
WS 2 Müller-Buschbaum, P.
FOPRA-Versuch 42: Rasterkraftmikroskopie (AEP, KM)
aktuelle Informationen
Zuordnung zu Modulen:
PR 1 Apfelbeck, F.
Leitung/Koordination: Müller-Buschbaum, P.
FOPRA-Versuch 61: Neutronenstreuung am FRM II (AEP, BIO, KM, KTA)
aktuelle Informationen
Zuordnung zu Modulen:
PR 1 Georgii, R.
Leitung/Koordination: Müller-Buschbaum, P.
Führung durch die Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) für Studierende der Physik
aktuelle Informationen
Zuordnung zu Modulen:
EX 0.1
Leitung/Koordination: Müller-Buschbaum, P.
Seminar: Polymere
Zuordnung zu Modulen:
SE 2 Müller-Buschbaum, P. Papadakis, C. Mi, 13:15–15:00, PH 3734
sowie einzelne oder verschobene Termine
Seminar über Struktur und Dynamik kondensierter Materie
Zuordnung zu Modulen:
SE 2 Müller-Buschbaum, P. Papadakis, C. Di, 13:00–15:00, PH 3734
sowie einzelne oder verschobene Termine
Sprechstunde zu Nanostrukturierte, weiche Materialien 1
Zuordnung zu Modulen:
RE 2 Müller-Buschbaum, P. Termine in Gruppen

Offers for Theses in the Group

High efficiency next generation organic solar cells
Next generation organic solar cells are solar cells beyond the silicon type photovoltaic devices. Organic solar cells have reached efficiencies in the champion solar cells well above 18%. Key element of such solar cells is the highly designed active layer, which transfers light into separated charge carriers. Aim of this experimental project is the preparation and full characterization of an active layer for high performance organic photovoltaic devices to further understand the fundamental correlation between morphology and solar cell performance. In this work a novel efficiency record-setting system will be investigated regarding the influence of an additional third component, in our case, either solvent additive or polymer. The project will involve a literature review, sample preparation, photovoltaic device fabrication and photoluminescent measurements. The focus is the usage of advanced scattering techniques for the determination of structural length scales of the active layer in the solar cell.
suitable as
  • Master’s Thesis Applied and Engineering Physics
Supervisor: Peter Müller-Buschbaum
Lithium-ion batteries with modified electrolyte for next generation batteries
Lithium-ion batteries are an indispensable energy supply in modern society. The ideal anode consists of lithium metal due to its high specific energy and low electrochemical potential. However, lithium-ion batteries with liquid electrolyte are prone to form lithium dendrites, which can lead to failure or even explosion of the battery. Therefore, polymer electrolytes are an attractive alternative to bypass these obstacles. However, polymer electrolytes suffer from high contact resistances and low ionic conductivities, which requires an elevated operating temperature. In this project, a hybrid electrolyte based on liquid electrolyte modified with polymer will be prepared. Then, CR2032 coin cell batteries will be fabricated and tested with standard cycling procedures. Besides electrochemical characterization techniques, complementary measurement like real space imaging techniques (scanning electron microscopy, SEM) and reciprocal space techniques (small angle x-ray scattering, SAXS) can be performed. Overall, this master thesis project involves literature review, sample preparation and data analysis.
suitable as
  • Master’s Thesis Applied and Engineering Physics
Supervisor: Peter Müller-Buschbaum
Low-temperature fabrication of titania films for hybrid solar cells on flexible substrates
Low-temperature (<150°C) route towards titania films offer promise for simple manufacturing, compatibility with flexible substrates, and titania-based solar cells. Herein, we use a specific titania precursor, ethylene glycol-modified titanate, to fabricate titania films as an electron-transporting layer. This experimental bachelor thesis aims at understanding the working principle of hybrid solar cells and the corresponding fabrication process. Different film characterization will be used such as SEM, GISAXS, XRD, UV-Vis, XPS, etc. The project will involve a literature review, sample preparation process, data analysis and result evaluation.
suitable as
  • Master’s Thesis Applied and Engineering Physics
Supervisor: Peter Müller-Buschbaum
Printed perovskite solar cells
Organic-inorganic lead halide perovskite solar cells have recently achieved 25.5% efficiency owing to their tunable bandgap, high carrier mobility and long diffusion length. Nevertheless, most of the solar cells were fabricated based on the spin-coating method, which suffers from waste of material and missing scalability. In this regard, the printing technique, a simple and scalable method, is advantageous to realize a future commercial application of perovskite solar cells. In this project, we aim to fabricate perovskite solar cells by printing and have an overall understanding of the growth mechanism of the perovskite film during printing. We use imaging techniques (e.g. electron microscopy) and methods for structure and morphology determination, e.g. X-ray scattering.
suitable as
  • Master’s Thesis Applied and Engineering Physics
Supervisor: Peter Müller-Buschbaum
Printed polymer-based thin film batteries
Materials for high energy density, solid-state batteries have been tremendously explored in the last decade. In particular, lithium-ion technology has attracted major interest. Among the many different types of batteries, the so-called polymer-based thin film batteries are very attractive as they can be incorporated into thin film devices. An inherent important part of such thin film lithium ion batteries is the membrane and solid-state polymer electrolyte membranes have attracted high attention in this respect. Lithium ions’ incorporation into solid-state polymer electrolyte membranes had shown a significant effect on both, the structure and properties, of the membranes in either the bulk or film format. The morphological reorganization and the thermodynamic properties of the solid-state polymer electrolyte membrane upon adding lithium salts and small molecules are the subjects of the experimental investigation. The polymer membranes will be prepared with printing. The structure and crystallinity of the lithium-doped membranes at different temperatures will be investigated with small/wide-angle X-ray scattering (SAXS/WAXS). The effects of morphology on the ionic conductivity of these ion-conducting membranes will be investigated using impedance spectroscopy. Aim of the present study is to increase conductivity with the help of small molecule additives, which can further improve the membrane morphology beyond the possibilities of the standard approach. Such high conductivity will be very beneficial for further downsizing of polymer-based thin film batteries.
suitable as
  • Master’s Thesis Applied and Engineering Physics
Supervisor: Peter Müller-Buschbaum
Smart nano-sensors made of stimuli-responsive polymers in solution and in thin films
Whereas macroscopic sensors made of stimuli-responsive hydrogels are well established, in the nanoworld such sensors still face many challenges. Potential fields of application of such sensors extend from engineering to bioengineering and medicine, e.g. as nanosensors for the control of concentration of glucose for diabetes patients or as switchable surface in the frame of tissue engineering. In this experimental project smart hydrogels, made of stimuli-responsive hydrogels will be investigated. Hydrogel films with thicknesses of a few tens to some hundreds of nanometers and spontaneously deswell or swell due to external stimuli, like temperature or the concentrations of ions. The changes in thickness and in molecular interactions in swelling or collapsing hydrogels will be probed during the switching process by different lab-based techniques. A comprehensive understanding of the switching process can be achieved by complementary neutron scattering experiments at large scale facilities. The project will involve a literature review, preparation of hydrogels, as well as experimental investigations and interpretations of the repeated switching of the stimuli-responsive hydrogels.
suitable as
  • Master’s Thesis Applied and Engineering Physics
Supervisor: Peter Müller-Buschbaum
Synthesis and self-assembly of gold nanoparticles for optoelectronic devices
Gold nanoparticles (Au NPs) show peculiar optical and electrical properties compared with the macroscopic metal owing to the characteristic of a nanoscale. Recently many advantages were made in optoelectronic devices applications with broadening band and energy transfer. In this project, your work will focus on the Au NPs structure regulation, since the size, density, and morphology of the Au NPs will influence the crystallinity of the photoactive film and charge transportation of the device. Specifically, you can work on one of the following topics: a) Synthesis and investigate optical properties of different morphology of gold nanoparticles b) Self-assembly of monolayer Au NPs array for optoelectronic devices.
suitable as
  • Master’s Thesis Applied and Engineering Physics
Supervisor: Peter Müller-Buschbaum

Current and Finished Theses in the Group

Effects of additives on 2D perovskites solar cells
Abschlussarbeit im Masterstudiengang Physics (Applied and Engineering Physics)
Themensteller(in): Peter Müller-Buschbaum
Global impacts of climate change on heating and cooling energy demand of buildings
Abschlussarbeit im Masterstudiengang Physics (Applied and Engineering Physics)
Themensteller(in): Peter Müller-Buschbaum
 Operando study of all-solid-state lithium ion batteries
Abschlussarbeit im Masterstudiengang Physics (Applied and Engineering Physics)
Themensteller(in): Peter Müller-Buschbaum
P-type PbS CQDs ink of solar cell using slot-die coating
Abschlussarbeit im Masterstudiengang Physics (Applied and Engineering Physics)
Themensteller(in): Peter Müller-Buschbaum
Top of page