Apl. Prof. Dr. rer. nat. Peter Müller-Buschbaum

Photo von Prof. Dr. rer. nat. Peter Müller-Buschbaum.
Telefon
+49 89 289-12451
+49 89 289-12458
+49 89 289-12459
+49 89 289-12460
Raum
PH: 3278
E-Mail
muellerb@ph.tum.de
Links
Homepage
Visitenkarte in TUMonline
Arbeitsgruppen
Fakultät für Physik
Funktionelle Materialien
Funktion
Außerplanmäßiger Professor am Physik-Department

Lehrveranstaltungen und Termine

Titel und Modulzuordnung
ArtSWSDozent(en)Termine
Experimentalphysik 1 (MSE)
Zuordnung zu Modulen:
VO 2 Müller-Buschbaum, P. Mi, 15:00–16:30, MW 2001
Nanostructured Soft Materials 1
Zuordnung zu Modulen:
VO 2 Müller-Buschbaum, P. Di, 15:00–16:30, PH 3734
Polymer Physics 1
Zuordnung zu Modulen:
VO 2 Müller-Buschbaum, P. Di, 10:00–12:00, PH II 127
Studentenseminar: Grundlegende Phänomene der Physik der weichen Materie
Zuordnung zu Modulen:
HS 2 Müller-Buschbaum, P.
Exercise to Nanostructured Soft Materials 1
Zuordnung zu Modulen:
UE 2
Leitung/Koordination: Müller-Buschbaum, P.
Termine in Gruppen
Exercise to Polymer Physics 1
Zuordnung zu Modulen:
UE 2
Leitung/Koordination: Müller-Buschbaum, P.
Termine in Gruppen
Übung zu Experimentalphysik 1 (MSE)
Zuordnung zu Modulen:
UE 2
Leitung/Koordination: Müller-Buschbaum, P.
Termine in Gruppen
Aktuelle Probleme der organischen Photovoltaik
Zuordnung zu Modulen:
SE 2 Müller-Buschbaum, P. Mo, 10:00–11:30, PH 3734
Mo, 10:00–11:30, PH 3734
Dozentensprechstunde Polymerphysik 1
Zuordnung zu Modulen:
KO 2 Müller-Buschbaum, P. Di, 17:00–18:30, PH 3278
Edgar-Lüscher-Lehrerfortbildungs-Seminar "Moderne Materialien"
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
WS 2 Müller-Buschbaum, P. Mi, 08:00–20:00
FOPRA-Versuch 42: Rasterkraftmikroskopie
Zuordnung zu Modulen:
PR 1 Müller-Buschbaum, P.
Mitwirkende: Xia, S.
Seminar: Polymere
Zuordnung zu Modulen:
SE 2 Müller-Buschbaum, P. Papadakis, C. Mi, 13:00–15:00, PH 3734
Seminar über Struktur und Dynamik kondensierter Materie
Zuordnung zu Modulen:
SE 2 Müller-Buschbaum, P. Papadakis, C. Di, 13:15–15:00, PH 3734
Sprechstunde zu Nanostrukturierte, weiche Materialien
Zuordnung zu Modulen:
KO 2 Müller-Buschbaum, P. Di, 18:30–20:00, PH 3278
Sprechstunde zur Experimentalphysik für MSE
Zuordnung zu Modulen:
KO 2 Müller-Buschbaum, P. Mi, 17:00–18:30, PH 3278

Ausgeschriebene Angebote für Abschlussarbeiten

Development of a flexible sample environment for neutron scattering on multi-stimuli responsive hydrogel thin films

Since several decades, multi-stimuli responsive hydrogels are attracting the scientific focus, based on their versatile applicability in the fields of sensoric, drug delivery or nano-switches. When changing an external stimulus such as pH, temperature, pressure or light illumination specific dynamic processes are taking place inside the hydrogel network. Thus, these polymers are an interesting foundation for new research fields such as green architecture or soft robotics. In order to apply responsive hydrogels in the aforementioned technical fields, the mechanisms behind these dynamic processes are an object of current research.

Neutron scattering is a powerful and suitable measurement technique for studying dynamic activities inside a hydrogel. Information about thickness, material composition and roughness can be obtained, even during dynamic processes.

The task is to develope a setup for grazing incidence small angle neutron scattering (GISANS) and as such development is required onthe final design and layout of the measurement setup,a quick and reliable sample change system,the electronical circuit and connections to the measurement chamber,a remote-control of all elements andthe read-out system.

First measurements with the constructed sample environment will be performed at neutron scattering instruments at the MLZ.

geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Peter Müller-Buschbaum
High efficiency next generation solar cells

Next generation solar cells are solar cells beyond the silicon type photovoltaic devices. Organic solar cells have reached efficiencies in the champion solar cells well above 10%. Key element of such solar cells is the highly designed active layer, which transfers light into separated charge carriers. Aim of this experimental project is the preparation and full characterization of an active layer for high performance organic photovoltaic devices to further understand the fundamental correlation between morphology and solar cell performance. In this work a novel efficiency record-setting system will be investigated regarding the influence of an additional third component, in our case, either solvent additive or polymer. The project will involve a literature review, sample preparation, photovoltaic device fabrication and photoluminescent measurements. The focus is the usage of advanced scattering techniques for the determination of structural length scales of the active layer in the solar cell.

geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Peter Müller-Buschbaum
Looking into the soft behavior of hybrid crystalline perovskite thin film

Solar cells based on organometallic lead halide perovskites have established themselves as a promising alternatives to commercial thin film solar cells. Photovoltaic conversion efficiencies have seen an increase from first reports of 3.8% to certified efficiencies of over 22% in less than a decade since the inception of the field. The crystallographic versatility of the material allows the possibility of extensive chemical tuning, which manifests in the material as a spectra of properties that may be obtained. This entices research on hybrid perovskite structures combining different organic and inorganic groups into a crystalline framework. Recent evidence indicates that the class of perovskite materials display characteristics which are suggestive of ‘soft matter’ like behavior. Ideal candidates would be helping demonstrate this claim through experimental work. The opportunity to be carrying out work in sophisticated environments, such as working in glovebox or carrying out state-of-the-art experiments at synchrotron sources are feasible. Other characterization techniques would be utilized for relevant archetypal measurements.

The project falls within a rapidly progressing field with great potential for industrialization. Inspired, promising candidates with good academic background and research experience may apply in order to acquire experience on relevant materials, electronic devices made thereof and characterization techniques for holistic knowledge within the booming field.


geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Peter Müller-Buschbaum
Novel nanostructured thermoelectric hybrid materials

In this project, we aim to fabricate and investigate novel organic-inorganic hybrid materials for thermoelectric applications. The goal is to realize efficient low temperature (T < 100°C) thermoelectric thin films and coatings which can contribute for example to energy efficient buildings. By combining nanostructured inorganic materials with conducting polymers a novel approach for this class of materials shall be realized. Possible inorganic nanomaterial components include Silicon nanocrystals (either undoped, n-type or p-type doped) as well as other nanoparticles. Different polymer materials such as the polymer blends of conjugated polymers, which can be tuned in conductivity and in its nanostructure, shall be used as the organic partner in our hybrid approach.

geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Peter Müller-Buschbaum
Smart nano-sensors made of stimuli-responsive polymers in solution and in thin films

Whereas macroscopic sensors made of stimuli-responsive hydrogels are well established, in the nanoworld such sensors still face many challenges. Potential fields of application of such sensors extend from engineering to bioengineering and medicine, e.g. as nanosensors for the control of concentration of glucose for diabetes patients or as switchable surface in the frame of tissue engineering. In this experimental project smart hydrogels, made of stimuli-responsive hydrogels will be investigated. Hydrogel films with thicknesses of a few tens to some hundreds of nanometers and spontaneously deswell or swell due to external stimuli, like temperature or the concentrations of ions. The changes in thickness and in molecular interactions in swelling or collapsing hydrogels will be probed during the switching process by different lab-based techniques. A comprehensive understanding of the switching process can be achieved by complementary neutron scattering experiments at large scale facilities. The project will involve a literature review, preparation of hydrogels, as well as experimental investigations and interpretations of the repeated switching of the stimuli-responsive hydrogels.


geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Peter Müller-Buschbaum
Structural analysis of hybrid polymer–solid thin films

Nanostructured polymer–solid hybrid thin films have gained a lot of attention during the last decade owing to the broad spectrum of technological applications such as solar cell, Li-ion battery, OLEDs and sensors. The structure of metal nanoparticles-polymer hybrid thin film is successfully probed with advanced grazing-incidence small-angle X-ray technique (GISAXS). In-situ GISAXS study of metal deposition on nanostructured polymer templates is performed at large-scale facility DESY, in Hamburg. In a millisecond time-resolved experiment, large amount of data is generated that enables a real-time monitoring of the growth kinetics of metal nanoparticles on the polymer surfaces. To characterize the structure of these polymer-solid hybrid materials, analysis models needs to be developed for interpreting the resulting GISAXS patterns. Software packages, useful for data analysis for advanced grazing-incidence techniques, are currently available. Structural information on the hybrid films, including the metal particle size, size distribution, positional distribution factor, and particle mobility on the sample surface can be obtained, by applying these analysis models to fit the experimental GISAXS data. The work will answer open questions on how the high-ordered arrays of solid materials forms on polymer surfaces, starting from microscopic (atomistic) up to mesoscopic (aggregate) level.

geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Peter Müller-Buschbaum

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.

Biophysik

Biologische Systeme, vom Protein bis hin zu lebenden Zellen und deren Verbänden, gehorchen physikalischen Prinzipien. Unser Forschungsbereich Biophysik ist deutschlandweit einer der größten Zusammenschlüsse in diesem Bereich.