de | en

Prof. Ph.D. Christine Papadakis

Photo von Prof. Christine Papadakis.
Phone
+49 89 289-12447
Room
PH: 3283
E-Mail
papadakis@tum.de
frauenbeauftragte@ph.tum.de (Deputy Equal Opportunity Officer of the Physics Department)
Links
Homepage
Page in TUMonline
Group
Soft Matter Physics
Job Titles
Consultation Hour
im Semester dienstags 10.00-11.00 h, sonst nach Vereinbarung

Courses and Dates

Offered Bachelor’s or Master’s Theses Topics

Amphiphilic polymeric conetworks swell both in water and organic solvents. Using star block copolymers as building blocks, highly ordered gels with high toughness are obtained. In the proposed master thesis, the star block copolymers as well as the resulting conetworks shall be investigated in organic solvents using dynamic light scattering and small-angle X-ray scattering. The candidate should be interested in experimental work as well as in data analysis and molecular interpretation.
suitable as
  • Master’s Thesis Condensed Matter Physics
  • Master’s Thesis Applied and Engineering Physics
Supervisor: Christine Papadakis
pH-responsive Polymermizellen für den Wirkstofftransport
In aqueous solution, amphiphilic block copolymers form core-shell micelles with the hydrophobic blocks forming the core and the hydrophilic blocks the shell. Such micelles find numerous applications for uptake, transport and release of hydrophobic substances. “Smart” systems may be created if the shell-forming block is pH-responsive, i.e. its degree of charge is controlled by pH. These can be used for the delivery of DNA. In the proposed master thesis, triblock terpolymers featuring a hydrophobic, a pH-responsive and a water-soluble block shall be studied using fluorescence correlation spectroscopy, dynamic light scattering and small-angle X-ray or neutron scattering. The candidate should be interested in experimental work as well as in data analysis and molecular interpretation.
suitable as
  • Master’s Thesis Condensed Matter Physics
  • Master’s Thesis Applied and Engineering Physics
Supervisor: Christine Papadakis
Proteinbasierte Nanoteilchen für den Wirkstofftransport
Protein-based nanocarriers are of great interest for the encapsulation and release of hydrophobic bioactive substances, e.g. medical drugs, upon application of stimuli, such as ionic strength and pH. Such nanoparticles may be prepared from proteins and polyelectrolytes that form complexes by electrostatic interactions. By subsequent heating, the disulfide bonds between the proteins within the nanoparticles are stabilized. This preparation method yields robust nanoparticles that can swell or deswell upon changes of pH and ionic strength and retain the multifunctionality of the incorporated proteins. In the project proposed, the nanoparticles shall be characterized in terms of their size and internal morphology in dependence on the building blocks and upon change of pH or ionic strength. At this, a combination of fluorescence correlation spectroscopy, light scattering and small-angle X-ray scattering (SAXS) will be used. The candidate should be interested in experimental work as well as in data analysis and molecular interpretation.
suitable as
  • Master’s Thesis Condensed Matter Physics
  • Master’s Thesis Applied and Engineering Physics
Supervisor: Christine Papadakis
Responsive, selbst-assemblierte Nanopartikel

Amphiphilic block copolymers having a permanently hydrophobic block and a thermo-responsive block form nanoparticles, or rather core-shell micelles, in aqueous solution. The structure of these micelles is controllable by changing the temperature or the ratio between the hydrophobic and the hydrophilic block. These properties enable amphiphilic block copolymers as candidates for a wide variety of applications, such as drug delivery. The main goal of this thesis is to investigate above which polymer concentration micelles form and to characterize the size of the micelles by fluorescence correlation spectroscopy.  For more information, please contact Prof. Christine Papadakis, papadakis@tum.de.

suitable as
  • Bachelor’s Thesis Physics
  • Bachelor’s Thesis Physics Education
Supervisor: Christine Papadakis
Schaltbare Polymerbürsten

Poly(2-ethyl-2-oxazoline) (PEtOx) in aqueous solution is a responsive polymer which suddenly dehydrates, becomes water-insoluble and collapses, when the sample is heated through the lower critical solution temperature (LCST). We investigate molecular brushes, in which PEtOx chains are densely-grafted on a polymer backbone. The compact architecture has an influence on the dehydration and collapse behavior, and the entire brush changes structure when the side chains collapse.

In the suggested bachelor project, the influence of the architecture on the collapse behavior shall be investigated using Fourier-transform infrared spectroscopy (FTIR) and dynamic light scattering (DLS). After a literature research, samples will be prepared and measured, and data analysis will be carried out. For more information, please contact Prof. Christine Papadakis, papadakis@tum.de.

suitable as
  • Bachelor’s Thesis Physics
  • Bachelor’s Thesis Physics Education
Supervisor: Christine Papadakis
Zweifach responsive Polymer-Nanopartikel

Amphiphilic block copolymers having a permanently hydrophobic block and a responsive block form core-shell micelles in aqueous solution. The structure of these micelles is controllable by changing the temperature or pH value. These properties enable amphiphilic block copolymers as candidates for a wide variety of applications, such as drug delivery. The main goal of this thesis is to investigate the effect of the pH value on the transition temperature and the micellar size. At this, differential scanning calorimetry (DSC) and dynamic light scattering will be used. For more information, please contact Prof. Christine Papadakis, papadakis@tum.de.

suitable as
  • Bachelor’s Thesis Physics
  • Bachelor’s Thesis Physics Education
Supervisor: Christine Papadakis
Top of page