Physics with Neutrons 1 (Fundamentals)

Module PH2053

This module handbook serves to describe contents, learning outcome, methods and examination type as well as linking to current dates for courses and module examination in the respective sections.

Module version of WS 2015/6 (current)

There are historic module descriptions of this module. A module description is valid until replaced by a newer one.

available module versions
WS 2015/6WS 2010/1

Basic Information

PH2053 is a semester module in English or German language at Master’s level which is offered in winter semester.

This Module is included in the following catalogues within the study programs in physics.

  • General catalogue of special courses
  • Specific catalogue of special courses for Applied and Engineering Physics
  • Specific catalogue of special courses for condensed matter physics

If not stated otherwise for export to a non-physics program the student workload is given in the following table.

Total workloadContact hoursCredits (ECTS)
150 h 75 h 5 CP

Responsible coordinator of the module PH2053 is Sebastian Mühlbauer.

Content, Learning Outcome and Preconditions

Content

The website of the neutron lecture and the related tutorials can be found here:

http://wiki.mlz-garching.de/n-lecture:index

  • Production of Neutron Beams
  • Scattering Theory
  • Nuclear Elastic Neutron Scattering: Structure Determination
  • Nuclear Inelastic Neutron Scattering: Phonons
  • Neutron Scattering from Disordered Systems: Gases, Liquids

Learning Outcome

After participation in the module the student is able to:

  • apply the kinematic theory of elastic neutron scattering
  • understand the use of various instruments for neutron scattering
  • judge the use of various scattering methods for the determination of the structure of various materials
  • analyse x-ray and neutron scattering diffraction data from powder and single crystals
  • determine and analyse phonon dispersion curves
  • determine and analyse phonon density of states
  • understand diffraction data from non-crystalline materials

Preconditions

  • Bachelor degree in physics
  • suggested: course in solid state physics

Courses, Learning and Teaching Methods and Literature

Courses and Schedule

Learning and Teaching Methods

The learning outcomes of the module will be achieved via frontal lecture, written and verbal lecturing and powerpoint presentations. The lecture will be complemented by a weekly exercise class, where students will solve problems under supervision of a tutor.

Media

  • lecture
  • exercises
  • books
  • internet

Literature

  1. A. Furrer, J. Mesot, T. Strässle: Neutron Scattering in Condensed Matter Physics, World Scientific, London (2009) .
  2. G. L. Squires: Introduction to the Theory of Thermal Neutron Scattering, Dover Publications, N. Y. (1966).
  3. S. W. Lovesey, Theory of Neutron Scattering from Condensed Matter I, II, Oxford Science Publ., Oxford (1984).
  4. A. Furrer: Frontiers in Neutron Scattering, World Scientific, London (1999).
  5. G. E. Bacon: Neutron Diffraction, Oxford (1962).
  6. P. A. Egelstaff: Thermal Neutron Scattering, Acad. Press, London (1965).

Module Exam

Description of exams and course work

In an oral exam the learning outcome is tested using comprehension questions and sample problems.

In accordance with §12 (8) APSO the exam can be done as a written test. In this case the time duration is 60 minutes.

Remarks on associated module exams

The exam for this module can be taken together with the exam to the associated follow-up module PH2054: Physics with Neutrons 2 / Physik mit Neutronen 2 after the follwoing semester. In this case you need to register for both exams in the following semester.

Exam Repetition

There is a possibility to take the exam at the end of the semester. There is a possibility to take the exam in the following semester.

Condensed Matter

When atoms interact things can get interesting. Fundamental research on the underlying properties of materials and nanostructures and exploration of the potential they provide for applications.

Nuclei, Particles, Astrophysics

A journey of discovery to understanding our world at the subatomic scale, from the nuclei inside atoms down to the most elementary building blocks of matter. Are you ready for the adventure?

Biophysics

Biological systems, from proteins to living cells and organisms, obey physical principles. Our research groups in biophysics shape one of Germany's largest scientific clusters in this area.