de | en

Experimental Astro-Particle Physics

Prof. Stefan Schönert

Research Field

Neutrino Physics

  • LENA - Low Energy Neutrino Astronomy
  • Borexino
  • DoubleChooz
  • CNNS - Coherent Neutrino Nucleus Scattering
  • GERDA - Search for neutrino-less double beta decay

Dark Matter Search

  • CRESST - Cryogenic Rare Event Search with Superconducting Thermometers
  • CRESST Scattering Experiment at the Maier-Leibnitz Laboratorium
  • EURECA - European Dark Matter Search
  • Experiments on liquified rare gases

Address/Contact

James-Franck-Str. 1/I
85748 Garching b. München
e15office@ph.tum.de
+49 89 289 12522
Fax: +49 89 289 12680

Members of the Research Group

Professor

PhotoDegreeFirstnameLastnameRoomPhoneE-Mail
Photo von Prof. Dr. rer. nat. Stefan Schönert. Prof. Dr. Stefan Schönert 3053 +49 89 289 12511 E-Mail

Office

PhotoDegreeFirstnameLastnameRoomPhoneE-Mail
Photo von Dr. Ph.D. Paola Mucciarelli. Ph.D. Paola Mucciarelli 3051 +49 89 289-12522 E-Mail
Photo von Sabine Wenzel. Sabine Wenzel 3051 +49 89 289-12639 E-Mail

Scientists

PhotoDegreeFirstnameLastnameRoomPhoneE-Mail
kein Photo vorhanden M.Sc. Ahmed Abdelhameed E-Mail
kein Photo vorhanden Dr. Matteo Agostini E-Mail
kein Photo vorhanden M.Sc. Simon Appel +49 89 289-14416 E-Mail
Photo von Heerak Banerjee. Heerak Banerjee +4917686682575 E-Mail
kein Photo vorhanden Elisabetta Bossio +49 89 289-12508 E-Mail
kein Photo vorhanden Sarthak Choudhary E-Mail
Photo von Tommaso Comellato. Tommaso Comellato +49 89 289-12475 E-Mail
kein Photo vorhanden M.Sc. Andreas Erhart E-Mail
kein Photo vorhanden Stephan Fichtinger E-Mail
kein Photo vorhanden Vasile Mihai Ghete E-Mail
kein Photo vorhanden Dr. Konstantin Gusev +49 89 289-14375 E-Mail
kein Photo vorhanden M.Sc. Florian Henkes +49 89 289-53607 E-Mail
kein Photo vorhanden Margarita Kaznacheeva +49 89 289-12504 E-Mail
Photo von Angelina Kinast M.Sc.. M.Sc. Angelina Kinast +49 89 289-13005 E-Mail
kein Photo vorhanden Gabriele-Elisabeth Körner +49 89 289-12293 E-Mail
kein Photo vorhanden Dr. Gunther Korschinek +49 89 289-14257 E-Mail
Photo von Patrick Krause M.Sc.. M.Sc. Patrick Krause +49 89 289-12518 E-Mail
kein Photo vorhanden M.Sc. Alexander Langenkämper +49 89 289-12431 E-Mail
kein Photo vorhanden M.Sc. Andreas Leonhardt 3518 +49 89 289-12533 E-Mail
Photo von Elizabeth Mondragon Cortes M.Sc.. M.Sc. Elizabeth Mondragon Cortes +49 89 289 12635 E-Mail
Photo von Moritz Neuberger M.Sc.. M.Sc. Moritz Neuberger +49 89 289-12475 E-Mail
kein Photo vorhanden M.Sc. Tobias Ortmann +49 89 289-12431 E-Mail
kein Photo vorhanden Dr. Luca Maria Pattavina +49 89 289-13005 E-Mail
Photo von Luigi Pertoldi. Luigi Pertoldi 3063 +49 89 289-12516 E-Mail
kein Photo vorhanden M.Sc. Lilly Peters +49 89 289-12504 E-Mail
Photo von Dr. Tina Pollmann. Dr. Tina Pollmann 3041 +49 89 289 12635 E-Mail
kein Photo vorhanden Dr. Walter Potzel +49 89 289-12508 E-Mail
kein Photo vorhanden Dr. Johannes Rothe +49 89 289-13005 E-Mail
Photo von Nicole Schermer M.Sc.. M.Sc. Nicole Schermer 3065 +49 89 289-12431 E-Mail
kein Photo vorhanden Andreas Schosser E-Mail
kein Photo vorhanden M.Sc. Mario Schwarz +49 89 289-12475 E-Mail
kein Photo vorhanden M.Sc. Konstantin Schweizer +49 89 289-14416 E-Mail
Photo von Hans Steiger M.Sc.. Dr. Hans Steiger 3043 +49 89 289-12328 E-Mail
kein Photo vorhanden Dr. Raimund Strauß E-Mail
kein Photo vorhanden Prof. Dr. Marco Vignati E-Mail
kein Photo vorhanden M.Sc. Christoph Vogl E-Mail
kein Photo vorhanden Dr. Victoria Wagner +49 89 289-14375 E-Mail
kein Photo vorhanden M.Sc. Alexander Wex +49 89 289-12504 E-Mail
Photo von Christoph Wiesinger. Dr. Christoph Wiesinger +49 89 289-53605 E-Mail
Photo von Dr. rer. nat. Michael Willers. Dr. Michael Willers +49 89 289-53603 E-Mail
kein Photo vorhanden Daniya Zinatulina E-Mail

Students

PhotoDegreeFirstnameLastnameRoomPhoneE-Mail
kein Photo vorhanden B.Sc. Rosanna Deckert E-Mail

Other Staff

PhotoDegreeFirstnameLastnameRoomPhoneE-Mail
kein Photo vorhanden Patrick Ajello E-Mail
kein Photo vorhanden Dr. Dhanurdhar Bajipai E-Mail
kein Photo vorhanden Laura Baudis E-Mail
kein Photo vorhanden Viacheslav Belov E-Mail
kein Photo vorhanden B.Sc. David Berger E-Mail
kein Photo vorhanden Thomas Elias Cocolios E-Mail
kein Photo vorhanden Giorgio Del Castello E-Mail
kein Photo vorhanden B.Sc. David Jan Dörflinger E-Mail
kein Photo vorhanden Mariia Fomina E-Mail
kein Photo vorhanden Norbert Gärtner +49 89 289-12513 E-Mail
Photo von Dr. rer. nat. Eva-Marianne Göger-Neff. Dr. Eva-Marianne Göger-Neff E-Mail
kein Photo vorhanden Maximilian Goldbrunner E-Mail
kein Photo vorhanden Izyan Hazwani Hashim E-Mail
kein Photo vorhanden Dipl.-Phys. Dieter Hauff E-Mail
kein Photo vorhanden Lukas Hein +49 89 289-12494 E-Mail
Photo von Harald Hess. Harald Hess +49 89 289-12494 E-Mail
kein Photo vorhanden Manuel Huber E-Mail
kein Photo vorhanden Lotta Maria Jokiniemi E-Mail
kein Photo vorhanden Lennard Kayser E-Mail
kein Photo vorhanden Sergei Kazartsev E-Mail
Photo von Georg Lerchl. Georg Lerchl +49 89 289-12494 E-Mail
kein Photo vorhanden Zheng Wei Ng E-Mail
kein Photo vorhanden Igor Ostrovskiy E-Mail
kein Photo vorhanden Faiznur Othman E-Mail
Photo von Laszlo Papp. Laszlo Papp +49 89 289 14289 E-Mail
kein Photo vorhanden Thomas Richter +49 89 289-12494 E-Mail
kein Photo vorhanden B.Sc. Gabriela Rodrigues Araujo E-Mail
kein Photo vorhanden Nadezda Rumyantseva E-Mail
kein Photo vorhanden Egor Shevchik E-Mail
kein Photo vorhanden Mark Shirchenko E-Mail
kein Photo vorhanden Yury Shitov E-Mail
Prof. Dr. Andreas Ulrich E-Mail
kein Photo vorhanden Stella Marina Vogiatzi Stergiani E-Mail
kein Photo vorhanden Philipp Wasser E-Mail
kein Photo vorhanden Jochen Wieser E-Mail
kein Photo vorhanden Igor Zhitnikov E-Mail

Teaching

Course with Participations of Group Members

Titel und Modulzuordnung
ArtSWSDozent(en)Termine
Einführung in die Kern-, Teilchen- und Astrophysik
eLearning-Kurs
Zuordnung zu Modulen:
VO 2 Schönert, S. einzelne oder verschobene Termine
Übungen zu Einführung in die wissenschaftliche Programmierung (IN8008)
LV-Unterlagen
Zuordnung zu Modulen:
UE 2 Menhorn, F. Milbradt, R. Obersteiner, M.
Leitung/Koordination: Neckel, T.
Mitwirkende: Berger, D.Chryssos, L.Rogge, C.
Termine in Gruppen
Übung zu Einführung in die Kern-, Teilchen- und Astrophysik
eLearning-Kurs
Zuordnung zu Modulen:
UE 2 Strauß, R.
Leitung/Koordination: Schönert, S.
Termine in Gruppen
Current Topics in Astro-Particle Physics
Zuordnung zu Modulen:
SE 2 Oberauer, L. Schönert, S. einzelne oder verschobene Termine
FOPRA Experiment 56: Cosmic Messengers: Catch Cosmic Rays with Silicon Photomultipliers (AEP, KM, KTA)
LV-Unterlagen
Zuordnung zu Modulen:
PR 1 Vogl, C.
Leitung/Koordination: Schönert, S.
FOPRA-Versuch 02: Messung der Radonkonzentration in Raumluft (AEP, KTA)
Zuordnung zu Modulen:
PR 1 Comellato, T.
Leitung/Koordination: Schönert, S.
Neutrinos and Dark Matter in Astro- and Particle Physics Colloquy
Zuordnung zu Modulen:
KO 2 Majorovits, B. Mertens, S. Resconi, E. Schönert, S. Weiler, A.
Vorbesprechung zum Fortgeschrittenen-Praktikum (F-Praktikum)
eLearning-Kurs aktuelle Informationen
Zuordnung zu Modulen:
OV 0.1 Schönert, S. Sharp, I. einzelne oder verschobene Termine

Offers for Theses in the Group

CRESST: Freezing cold, deep underground, illuminating the dark (matter)

The CRESST (Cryogenic Rare-Event Search with Superconducting Thermometers) experiment operated at the Gran Sasso underground laboratory employs highly sensitive cryogenic detectors to the search for signals of the elusive dark matter particles, a main ingredient of the Universe whose nature is still unknown. 

The energy thresholds reached in CRESST-III are the lowest in the field, making CRESST the most sensitive experiment to light dark matter. Optimisation of the tungsten thin-film thermometers and of the techniques for data analysis promise will further improve the energy threshold, which will significantly boost the physics reach of the experiment.

 

A student can contribute to:

- design, production and prototyping of new CRESST detectors in Munich 

- development of high purity crystals 

- development of new software tools for data analysis

- dark matter data analysis

 

and, if interested, can participate in the operation of the main experiment at Gran Sasso. 

 

The theses can be carried out at the Chair for astroparticle physics of the Physics Department and/or at the Max-Planck-Institute for Physics (MPP). Supervision at the Physics Deptartment by Prof. Schönert / Dr. Strauss and at the MPP by Prof. Schönert /  Dr. Federica Petricca. Please contact schoenert@ph.tum.de, raimund.strauss@ph.tum.de and petricca@mpp.mpg.de for further information. 

 

We will organize a dedicated meeting for interested (bachelor) students on Tuesday, February 1, 14:00-16:00. For more information please check https://www.moodle.tum.de/course/view.php?id=75320 . Also Master students are welcome to join the meeting.

suitable as
  • Master’s Thesis Nuclear, Particle, and Astrophysics
Supervisor: Stefan Schönert
CRESST: Freezing cold, deep underground, illuminating the dark (matter)

The CRESST (Cryogenic Rare-Event Search with Superconducting Thermometers) experiment operated at the Gran Sasso underground laboratory employs highly sensitive cryogenic detectors to the search for signals of the elusive dark matter particles, a main ingredient of the Universe whose nature is still unknown. 

The energy thresholds reached in CRESST-III are the lowest in the field, making CRESST the most sensitive experiment to light dark matter. Optimisation of the tungsten thin-film thermometers and of the techniques for data analysis promise will further improve the energy threshold, which will significantly boost the physics reach of the experiment.

 

A student can contribute to:

- design, production and prototyping of new CRESST detectors in Munich 

- development of high purity crystals 

- development of new software tools for data analysis

- dark matter data analysis

 

and, if interested, can participate in the operation of the main experiment at Gran Sasso. 

 

The theses can be carried out at the Chair for astroparticle physics of the Physics Department and/or at the Max-Planck-Institute for Physics (MPP). Supervision at the Physics Deptartment by Prof. Schönert / Dr. Strauss and at the MPP by Prof. Schönert /  Dr. Federica Petricca. Please contact schoenert@ph.tum.de, raimund.strauss@ph.tum.de and petricca@mpp.mpg.de for further information. 

 

We will organize a dedicated meeting for interested (bachelor) students on Tuesday, February 1, 14:00-16:00. For more information please check https://www.moodle.tum.de/course/view.php?id=75320 . Also Master students are welcome to join the meeting.

suitable as
  • Bachelor’s Thesis Physics
Supervisor: Stefan Schönert
LEGEND: Why does matter prevail over antimatter in today's Universe?

Neutrinos were discovered in 1956, but only at the turn of the millennium was it experimentally proven that the three known neutrino types can convert into one another. These flavor oscillations are possible only if neutrinos have nonzero mass, which is currently the only established contradiction to the standard model (SM) of particle physics.

 

From tritium beta decay experiments and cosmological observations, we know that their masses are very small—less than 10^{-5} of the electron mass. Neutrinos are the only fundamental spin-1/2 particles (fermions) without electric charge. As a consequence, they might be Majorana fermions, particles identical to their antiparticles.

 

This is a key ingredient for the explanation for why matter is so much more abundant than antimatter in today’s Universe and why neutrinos are so much lighter than the other elementary particles.

 

Majorana neutrinos would lead to nuclear decays that violate lepton number conservation and are therefore forbidden in the Standard Model of particle physics. The so-called neutrinoless double-beta (0nbb) decay simultaneously transforms two neutrons inside a nucleus into two protons with the emission of two electrons. The LEGEND-200 experiment, currently under commissioning at the Italian Gran Sasso underground laboratory aims to be the first experiment to probe half-lives beyond 1E27 years.

 

We offer the opportunity to carry out exciting experimental BSc (and MSc) theses with a focus on:

- liquid argon detector development: SiPMs, VUV light detection and wavelength shifting, xenon-doping, trace analysis;

- germanium detectors: detector design, modeling of signal generation, pulse shape analysis, surface event discrimination;

- new software tools and algorithms: classical techniques, machine learning methods;

- data analysis: rare line searches, exotic decays, time and spatial coincidence searches;

- Monte Carlo simulations: light propagation and detection in liquid argon, gamma rays from radioactive decays, isotope production deep underground by cosmic rays;

 

and, if interested, can participate in the operation of the main experiment at Gran Sasso. 

 

You would be fully integrated into the research team and would work closely together with our international partners.

 

The theses can be carried out at the Chair for astroparticle physics of the Physics Department. Supervision at the Physics Deptartment by Prof. Schönert and his team. Please contact schoenert@ph.tum.de for further information. 

 

We will organize a dedicated meeting for interested bachelor students on Tuesday, February 1, 14:00-16:00. For more information please check https://www.moodle.tum.de/course/view.php?id=75320 . Also Master students are welcome to join.

suitable as
  • Master’s Thesis Nuclear, Particle, and Astrophysics
Supervisor: Stefan Schönert
LEGEND: Why does matter prevail over antimatter in today's Universe?

<p>Neutrinos were discovered in 1956, but only at the turn of the millennium was it experimentally proven that the three known neutrino types can convert into one another. These flavor oscillations are possible only if neutrinos have nonzero mass, which is currently the only established contradiction to the standard model (SM) of particle physics. <o:p></o:p></p>

<p class="MsoNormal" style="margin: 0cm 0cm 0.0001pt; font-size: medium; font-family: Calibri, sans-serif;"><span lang="EN-US"> </span></p>

<p class="MsoNormal" style="margin: 0cm 0cm 0.0001pt; font-size: medium; font-family: Calibri, sans-serif;"><span lang="EN-US"> From tritium beta decay experiments and cosmological observations, we know that their masses are very small—less than 10^{-5} of the electron mass. Neutrinos are the only fundamental spin-1/2 particles (fermions) without electric charge. As a consequence, they might be Majorana fermions, particles identical to their antiparticles. <o:p></o:p></span></p>

<p class="MsoNormal" style="margin: 0cm 0cm 0.0001pt; font-size: medium; font-family: Calibri, sans-serif;"><span lang="EN-US"> </span></p>

<p class="MsoNormal" style="margin: 0cm 0cm 0.0001pt; font-size: medium; font-family: Calibri, sans-serif;"><span lang="EN-US"> This is a key ingredient for the explanation for why matter is so much more abundant than antimatter in today’s Universe and why neutrinos are so much lighter than the other elementary particles. <o:p></o:p></span></p>

<p class="MsoNormal" style="margin: 0cm 0cm 0.0001pt; font-size: medium; font-family: Calibri, sans-serif;"><span lang="EN-US"> </span></p>

<p class="MsoNormal" style="margin: 0cm 0cm 0.0001pt; font-size: medium; font-family: Calibri, sans-serif;"><span lang="EN-US"> Majorana neutrinos would lead to nuclear decays that violate lepton number conservation and are therefore forbidden in the Standard Model of particle physics. The so-called neutrinoless double-beta (0nbb) decay simultaneously transforms two neutrons inside a nucleus into two protons with the emission of two electrons. The LEGEND-200 experiment, currently under commissioning at the Italian Gran Sasso underground laboratory aims to be the first experiment to probe half-lives beyond 1E27 years. <o:p></o:p></span></p>

<p class="MsoNormal" style="margin: 0cm 0cm 0.0001pt; font-size: medium; font-family: Calibri, sans-serif;"><span lang="EN-US"> </span></p>

<p class="MsoNormal" style="margin: 0cm 0cm 0.0001pt; font-size: medium; font-family: Calibri, sans-serif;"><span lang="EN-US"> We offer the opportunity to carry out exciting experimental BSc (and MSc) theses with a focus on:<o:p></o:p></span></p>

<p class="MsoNormal" style="margin: 0cm 0cm 0.0001pt; font-size: medium; font-family: Calibri, sans-serif;"><span lang="EN-US"> - liquid argon detector development: SiPMs, VUV light detection and wavelength shifting, xenon-doping, trace analysis; </span></p>

<p class="MsoNormal" style="margin: 0cm 0cm 0.0001pt; font-size: medium; font-family: Calibri, sans-serif;"><span lang="EN-US"> - germanium detectors: detector design, modeling of signal generation, pulse shape analysis, surface event discrimination; <o:p></o:p></span></p>

<p class="MsoNormal" style="margin: 0cm 0cm 0.0001pt; font-size: medium; font-family: Calibri, sans-serif;"><span lang="EN-US"> - new software tools and algorithms: classical techniques, machine learning methods; <o:p></o:p></span></p>

<p class="MsoNormal" style="margin: 0cm 0cm 0.0001pt; font-size: medium; font-family: Calibri, sans-serif;"><span lang="EN-US"> - data analysis: rare line searches, exotic decays, time and spatial coincidence searches; <o:p></o:p></span></p>

<p class="MsoNormal" style="margin: 0cm 0cm 0.0001pt; font-size: medium; font-family: Calibri, sans-serif;"><span lang="EN-US"> - Monte Carlo simulations: light propagation and detection in liquid argon, gamma rays from radioactive decays, isotope production deep underground by cosmic rays; <o:p></o:p></span></p>

<p class="MsoNormal" style="margin: 0cm 0cm 0.0001pt; font-size: medium; font-family: Calibri, sans-serif;"><span lang="EN-US"> </span></p>

<p class="MsoNormal" style="margin: 0cm 0cm 0.0001pt; font-size: medium; font-family: Calibri, sans-serif;"><span lang="EN-US">and, if interested, can participate in the operation of the main experiment at Gran Sasso. <o:p></o:p></span></p>

<p class="MsoNormal" style="margin: 0cm 0cm 0.0001pt; font-size: medium; font-family: Calibri, sans-serif;"><span lang="EN-US"> </span></p>

<p>You would be fully integrated into the research team and would work closely together with our international partners. <o:p></o:p></p>

<p class="MsoNormal" style="margin: 0cm 0cm 0.0001pt; font-size: medium; font-family: Calibri, sans-serif;"><span lang="EN-US"> </span></p>

<p class="MsoNormal" style="margin: 0cm 0cm 0.0001pt; font-size: medium; font-family: Calibri, sans-serif;"><span lang="EN-US"> The theses can be carried out at the Chair for astroparticle physics of the Physics Department. Supervision at the Physics Deptartment by Prof. Schönert and his team. Please contact schoenert@ph.tum.de for further information. <o:p></o:p></span></p>

<p></p>

<p class="MsoNormal" style="margin: 0cm 0cm 0.0001pt; font-size: medium; font-family: Calibri, sans-serif;"><span lang="EN-US"> </span></p>

<p class="MsoNormal" style="margin: 0cm 0cm 0.0001pt; font-size: medium; font-family: Calibri, sans-serif;"><span lang="EN-US"> We will organize a dedicated meeting for interested bachelor students on Tuesday, February 1, 14:00-16:00. For more information please check https://www.moodle.tum.de/course/view.php?id=75320 . Also Master students are welcome to join. </span></p>

suitable as
  • Bachelor’s Thesis Physics
Supervisor: Stefan Schönert

Current and Finished Theses in the Group

Development of a simulation tool for X-ray fluorescence sources for the NUCLEUS experiment
Abschlussarbeit im Bachelorstudiengang Physik
Themensteller(in): Raimund Strauß
Simulation of Liquid Argon Scintillation Light in LEGEND-200: from Generation to Detection
Abschlussarbeit im Bachelorstudiengang Physik
Themensteller(in): Stefan Schönert
Top of page