Prof. Dr. rer. nat. Stefan Schönert

Photo von Prof. Dr. rer. nat. Stefan Schönert.
Telefon
+49 89 289-12511
Raum
PH: 3053
E-Mail
schoenert@ph.tum.de
Links
Homepage
Visitenkarte in TUMonline
Arbeitsgruppe
Experimentelle Astroteilchenphysik
Funktionen
Sprechstunde
Nach Vereinbarung

Lehrveranstaltungen und Termine

Titel und Modulzuordnung
ArtSWSDozent(en)Termine
Experimentalphysik 3
Zuordnung zu Modulen:
VO 4 Schönert, S. Mo, 08:00–10:00, MI HS1
Do, 12:00–14:00, MI HS1
Offenes Tutorium zu Experimentalphysik 3
Zuordnung zu Modulen:
UE 2 Höffer von Loewenfeld, P. Rohr, C.
Leitung/Koordination: Schönert, S.
Mo, 12:00–14:00, CH 22209
Mo, 14:00–16:00, MW 1050
Di, 08:00–10:00, CH 26410
Di, 08:00–10:00, CH 27401
Übung zu Experimentalphysik 3
Zuordnung zu Modulen:
UE 2 Rohr, C.
Leitung/Koordination: Schönert, S.
Termine in Gruppen
Aktuelle Themen der Tieftemperatur-Detektorenentwicklung zur Suche nach Dunkler Materie und neutrinolosem Doppelbetazerfall
Zuordnung zu Modulen:
SE 2 Oberauer, L. Schönert, S. Mo, 10:00–12:00, PH 3046
Astroteilchenphysik im Gran-Sasso-Untergrundlabor
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
EX 2 Mertens, S. Schönert, S.
Current Topics in Astro-Particle Physics
Zuordnung zu Modulen:
SE 2 Oberauer, L. Schönert, S. Mo, 13:30–15:00, PH 3046
FOPRA-Versuch 02: Messung der Radonkonzentration in Raumluft
Zuordnung zu Modulen:
PR 1 Schönert, S.
Mitwirkende: Pollmann, T.
FOPRA-Versuch 17: Mößbauer-Effekt
Zuordnung zu Modulen:
PR 1 Schönert, S.
Mitwirkende: Wagner, F.
FOPRA-Versuch 21: Lebensdauer-Messung
Zuordnung zu Modulen:
PR 1 Schönert, S.
Mitwirkende: Hohlweger, B.
FOPRA-Versuch 63: Gammaspektroskopie
Zuordnung zu Modulen:
PR 1 Schönert, S.
Mitwirkende: Heiss, B.
FOPRA-Versuch 77: Detektorphysik (Simulation und Experiment)
Zuordnung zu Modulen:
PR 1 Schönert, S.
Mitwirkende: Klenze, P.
Kolloquium zum neutrinolosen Doppelbetazerfall mit Halbleiterdetektoren
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
KO 2 Schönert, S.
Neutrinos and Dark Matter in Astro- and Particle Physics Colloquy
Zuordnung zu Modulen:
KO 2 Majorovits, B. Mertens, S. Resconi, E. Schönert, S. Weiler, A. Mo, 10:30–12:00
Tutorenseminar zu Experimentalphysik 3
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
SE 2 Rohr, C.
Leitung/Koordination: Schönert, S.
Vorbesprechung zum Fortgeschrittenen-Praktikum (F-Praktikum)
Zuordnung zu Modulen:
PR 0.1 Schönert, S. Stutzmann, M.
Mitwirkende: Hauptner, A.
einzelne oder verschobene Termine

Ausgeschriebene Angebote für Abschlussarbeiten

Hochempfindliche Tieftemperaturdetektoren zur Suche nach dunkler Materie

The CRESST (Cryogenic Rare-Event Search with Superconducting Thermometers) experiment operated at the Gran Sasso underground laboratory employs highly sensitive cryogenic detectors to the search for signals of the elusive dark matter particles in CaWO4 crystals. The energy thresholds of less than 100 eV reached in the current experimental run, CRESST-III Phase 1, are the lowest in the field, making CRESST the most sensitive experiment to light dark matter. Changes in the geometry of the tungsten thin-film thermometer promise still a factor two improvement in energy threshold, which could signicantly boost the physics reach of CRESST-III Phase 2. A Master's student can contribute to the design and prototyping of the new thermometers as well as characterisation of the new CRESST detectors in Munich. Deploying the detectors in the main setup at Gran Sasso could be the culmination of the thesis work.

Within the master thesis you would

  • become acquainted with superconducting transition-edge sensor (TES) technology
  • participate in the clean-room production of the sensors
  • be introduced to the operation of dilution refrigerators as well as cryogenic detector operation and analysis
  • participate in the operation of the main experiment at Gran Sasso

If you are interested, please contact: 

Prof. Stefan Schonert, E15 schoenert@ph.tum.de +49 89 289-12511

and 

Dr. Federica Petricca, MPP petricca@mpp.mpg.de +49 89 32354-309

geeignet als
  • Masterarbeit Kern-, Teilchen- und Astrophysik
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Stefan Schönert
Search for the creation of matter without the balancing anti-matter: improving the liquid argon scintillation light detection in GERDA and LEGEND

According to the Standard Model of particle physics, the difference in the number of leptons and antileptons is conserved in nuclear reactions. Every radioactive decay should therefore produce both leptons and antileptons symmetrically, thereby keeping the total lepton number constant. Given that neutrinos do not carry electric charge, they could be their own anti-particles, usually referred to as Majorana particles. From neutrino oscillation experiments we know that neutrinos are massive particles and it is very plausible that they are of Majorana type, violating lepton-number conservation, and connect to a sector of right-handed (sterile) heavy states. The decay of these heavy particles in the early universe could produce the cosmic matter-antimatter asymmetry (baryogenesis by leptogenesis). The most powerful way to demonstrate the Majorana nature of neutrinos is by the observation of neutrinoless double beta decay (0νββ), a nuclear decay that explicitly violates lepton-number conservation. Two electrons (matter) are created in this proposed nuclear process without the emission of anti-neutrinos (anti-matter). Neutrinoless double beta decay would also contribute to our understanding of the absolute mass scale of neutrinos, complementary to endpoint measurements of the tritium beta decay and to cosmological observations, and would provide guidance for the construction of neutrino mass models.

We are currently operating the GERDA experiment at the Italian Gran Sasso Laboratory, which has the strongest sensitivity worldwide, and are preparing the new LEGEND experiment. In both experiments, bare germanium detectors are operated in liquid argon which serves as a high-purity coolant and as an active veto system.

This master thesis would focus on the development and operation of the liquid argon veto system to discriminate signals from backgrounds. As a master student, you would

  • be involved in the development and testing of novel light detectors 
  • analyse and model the experimental signals
  • learn about modern detector technologies 
  • participate at the upgrade and commissioning of the system at the Gran Sasso underground laboratory. 

The chair of astroparticle physics has traditionally a high fraction of female bachelor, master and PhD students, and we strongly encourage our female KTA master students to apply. 

 
geeignet als
  • Masterarbeit Kern-, Teilchen- und Astrophysik
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Stefan Schönert
Search for the creation of matter without the balancing anti-matter: signal and backgrounds in novel HPGe detectors for GERDA and LEGEND
geeignet als
  • Masterarbeit Kern-, Teilchen- und Astrophysik
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Stefan Schönert
Sterile Neutrinos

In the last two decades several short baseline neutrino experiments reported results that could be interpreted as a hint for a sterile neutrino in the eV mass range. Such a new particle could mix with the active neutrino flavor, but would be insensitive to the standard weak interaction.  A search for eV-scale sterile neutrinos will be carried out with the CeSOX Experiment, which consists of an intense Cerium-144 antineutrino source deployed next to the large liquid scintillator detector Borexino at the Laboratory Nazionali del Gran Sasso.  The smoking-gun signal of eV-sterile neutrinos is an oscillatory pattern in space and energy inside the detector volume. Data taking is schedule to start in March 2018. The candidate will contribute to the analysis effort of the CeSOX experiment. 


Co-Betreuung

Prof. Dr. Stefan Schönert

email: schoenert@ph.tum.de

Dr. habil. Thierry Lasserre 

e-mail: thierry.lasserre@cea.fr 

office: Institute for Advanced Study, Technische Universität München, office number 2.009

web pages: 

http://www.tum-ias.de/focus-groups/current-focus-groups/fellow/thierry-lasserre.html#shortcv-tab

http://irfu.cea.fr/Pisp/thierry.lasserre/

geeignet als
  • Masterarbeit Kern-, Teilchen- und Astrophysik
Themensteller(in): Stefan Schönert

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.

Biophysik

Biologische Systeme, vom Protein bis hin zu lebenden Zellen und deren Verbänden, gehorchen physikalischen Prinzipien. Unser Forschungsbereich Biophysik ist deutschlandweit einer der größten Zusammenschlüsse in diesem Bereich.