Halbleiter-Nanostrukturen und -Quantensysteme

Prof. Jonathan Finley


Our group explores a wide range of topics related to the fundamental physics of nanostructured materials and their quantum-electronic and -photonic properties. We study the unique electronic, photonic and quantum properties of materials patterned over nanometer lengthscales and explore how sub-components can be integrated together to realise entirely new materials with emergent properties. This convergence of materials-nanotechnology, quantum electronics and photonics is strongly interdisciplinary, spanning topics across the physical sciences, as well as materials science and engineering.


Am Coulombwall 4/I
85748 Garching b. München
+49 89 289 12771
Fax: +49 89 289 12704

Mitarbeiterinnen und Mitarbeiter der Arbeitsgruppe

Professorinnen und Professoren

Mitarbeiterinnen und Mitarbeiter

Lehrangebot der Arbeitsgruppe

Lehrveranstaltungen mit Beteiligung der Arbeitsgruppe

Titel und Modulzuordnung
Zuordnung zu Modulen:
VU 3 Finley, J. Mittwoch, 14:00–16:00
Freitag, 10:00–12:00
sowie Termine in Gruppen
Experimentalphysik 4 in englischer Sprache
Zuordnung zu Modulen:
VO 2 Finley, J. Dienstag, 14:00–16:00
Münchner Physik-Kolloquium
Zuordnung zu Modulen:
KO 2 Finley, J. Krischer, K. Montag, 17:15–19:15
Montag, 17:15–19:15
sowie Termine in Gruppen

Ausgeschriebene Angebote für Abschlussarbeiten an der Arbeitsgruppe

Attaching wires to doped GaAs-AlGaAs core-multishell nanowire lasers

Semiconductor nanowires (NW) are rapidly emerging as a new generation of miniaturized on-chip coherent light sources by virtue of their unique geometry. In particular, due to the natural Fabry-Perot resonators formed by guided modes between the NW-endfacets, combined with the possibilities for direct monolithic integration on Si, NW lasers offer attractive applications in future optical interconnects and data communication.

Until now these NW lasers are driven optically, an electrical operation of the device is crucial for all applications. For this purpose, electrical contacts and a precise control of the doping profile in the device is required. The aim of this maswters thesis project is to develop appropriate process technologies to contact doped core-multishell NWs in a lying and standing geometry. This enables the characterization of the devices with respect to their electrical properties. Moreover, a comprehensive 2D-3D TCAD model of the NW laser will be implemented to simulate the electrothermal performance of the device. Adjusting the simulations to the measurement results enables the optimization of the doping profile and the heterostructure design of the NW laser. Experience in the area of clean room fabrication or TCAD modeling is a benefit, but secondary to motivation, commitment and a willingness to work as part of a team.

Applications should be sent to Prof. Finley (finley@wsi.tum.de)with c.c. to Jochen Bissinger (Jochen.Bissinger@wsi.tum.de). Please include a brief CV, a copy of your Bachelor Thesis and a transcript of your grades.

geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Jonathan Finley
Probing multiphoton wave packets using superconducting nanowire detectors

Within the last years, superconducting single photon detectors (SSPDs) have proven to be one of the most versatile detectors for visible to infrared wavelengths. They outperform other single photon detectors in terms of detection efficiency (ca 90%), timing resolution (<20ps) and dark count rates (<1cps) and can be modified to detect the number of photons simultaneously hitting the detector (photon-number resolution, PNR) [1]. They can be integrated into on-chip photonic circuits, making them highly promising for future chip-based optical quantum applications.

In this project we aim at adding photon-number resolving capabilities to optical waveguide-integrated SSPDs to detect multi-photon states in optical cavities. We will use established techniques to sputter thin NbN superconducting films and pattern them using e-beam lithography to fabricate the superconducting detectors. These detectors will be tested and characterised at low temperatures in an optical microscopy setup to probe the fundamental detection mechanisms. Furthermore, the detector design will be optimised concerning the photon number resolution capability. In an ambitious second step we will modify the detector design to include an optical gating in the detector and perform pump-probe spectroscopy-like characterisation of this new kind of devices.

During the project, you will work in close collaboration with a Ph.D. student, therefore, teamwork is crucial on this project. Some experience in the areas of optics, electronics, programming or cleanroom fabrication will be beneficial, but secondary to your personal motivation and commitment. 

Applications should be sent to Prof. Finley (finley@wsi.tum.de) including Fabian Flassig on c.c. (fabian.flassig@wsi.tum.de). Please include your CV, a copy of your Bachelor Thesis and a transcript of your grades.

[1] F. Natarajan et al. Supercond. Sci. Technol. 25 063001 (2012)

geeignet als
  • Masterarbeit Physik der kondensierten Materie
Themensteller(in): Jonathan Finley
Teaching Photons New Tricks: Mode control in monolithically integrated nanowire lasers
Reliable technologies for the monolithic integration of lasers onto silicon represent the holy grail for chip-level optical interconnects. In this context, nanowires (NW) fabricated using III−V semiconductors are of strong interest since they can be grown site-selectively on silicon using conventional epitaxial approaches. Their unique one-dimensional structure and high refractive index naturally facilitate low loss optical waveguiding and optical recirculation in the active NW region. In this versatile and ambitious project, a comprehensive 2D-3D TCAD model will be implemented to analyze a monolithically integrate NW laser on a silicon-on-insulator (SOI) substrate. The aim of this project is to design the cavity and the dielectric environment of the NW laser to control and manipulate its optical properties. Furthermore, the developed design approaches will be realized by different nanofabrication technologies and characterized by several optical measurements. Experience in the area of clean room fabrication or TCAD modeling is a benefit, but secondary to motivation and commitment. Applications should be sent to Prof. Finley (finley@wsi.tum.de) including Jochen Bissinger on c.c. (Jochen.Bissinger@wsi.tum.de). Please include your CV, a copy of your Bachelor Thesis and a transcript of your grades.
geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Jonathan Finley

Abgeschlossene und laufende Abschlussarbeiten an der Arbeitsgruppe

Developing an optical far-field based technique for nanometer precise positioning of NV-quantum sensors
Abschlussarbeit im Masterstudiengang Physik (Physik der kondensierten Materie)
Themensteller(in): Friedemann Reinhard
p-type modulation-doped GaAs-AlGaAs nanowire transistor
Abschlussarbeit im Masterstudiengang Physics (Applied and Engineering Physics)
Themensteller(in): Jonathan Finley

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.