Halbleiter-Nanostrukturen und -Quantensysteme

Prof. Jonathan Finley

Forschungsgebiet

Our group explores a wide range of topics related to the fundamental physics of nanostructured materials and their quantum-electronic and -photonic properties. We study the unique electronic, photonic and quantum properties of materials patterned over nanometer lengthscales and explore how sub-components can be integrated together to realise entirely new materials with emergent properties. This convergence of materials-nanotechnology, quantum electronics and photonics is strongly interdisciplinary, spanning topics across the physical sciences, as well as materials science and engineering.

Adresse/Kontakt

Am Coulombwall 4/I
85748 Garching b. München
+49 89 289 12771
Fax: +49 89 289 12704

Mitarbeiterinnen und Mitarbeiter der Arbeitsgruppe

Professorinnen und Professoren

Mitarbeiterinnen und Mitarbeiter

Lehrangebot der Arbeitsgruppe

Lehrveranstaltungen mit Beteiligung der Arbeitsgruppe

Titel und Modulzuordnung
ArtSWSDozent(en)Termine
Materialwissenschaften
Zuordnung zu Modulen:
VU 3 Finley, J. Mittwoch, 14:00–16:00
Freitag, 10:00–12:00
sowie Termine in Gruppen
Experimentalphysik 4 in englischer Sprache
Zuordnung zu Modulen:
VO 2 Finley, J. Dienstag, 14:00–16:00
Nanoplasmonics
Zuordnung zu Modulen:
VO 2 Kaniber, M. Donnerstag, 10:00–12:00
Energy and Materials Science
Zuordnung zu Modulen:
PS 1 Brandt, M. Finley, J.
Quantensensorik
Zuordnung zu Modulen:
HS 2 Reinhard, F. Dienstag, 14:00–16:00
What’s hot ... what’s not?
Zuordnung zu Modulen:
HS 2 Finley, J.
Mitwirkende: Müller, K.
Mentorenprogramm im Bachelorstudiengang Physik (Professor[inn]en A-K)
Zuordnung zu Modulen:
TT 0.2 Auwärter, W. Bandarenka, A. Barth, J. Bausch, A. Bishop, S. … (insgesamt 22)
Leitung/Koordination: Höffer von Loewenfeld, P.
FOPRA-Versuch 01: Ballistischer Transport (Flippern mit Elektronen)
Zuordnung zu Modulen:
PR 1 Finley, J.
Mitwirkende: Becker, J.
FOPRA-Versuch 14: Optische Absorption
Zuordnung zu Modulen:
PR 1 Finley, J.
Mitwirkende: Wierzbowski, J.
FOPRA-Versuch 24: Feldeffekt-Transistor (MOSFET)
Zuordnung zu Modulen:
PR 1 Finley, J.
Mitwirkende: Flassig, F.
FOPRA-Versuch 45: Optische Eigenschaften von Halbleiter-Quantenfilmen
Zuordnung zu Modulen:
PR 1 Finley, J.
Mitwirkende: Simmet, T.
Münchner Physik-Kolloquium
Zuordnung zu Modulen:
KO 2 Finley, J. Krischer, K. Montag, 17:15–19:15
Montag, 17:15–19:15
sowie Termine in Gruppen
Schottky-Seminar
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
SE 2 Amann, M. Finley, J. Holleitner, A. Stutzmann, M. Dienstag, 17:15–18:30

Ausgeschriebene Angebote für Abschlussarbeiten an der Arbeitsgruppe

Attaching wires to doped GaAs-AlGaAs core-multishell nanowire lasers

Semiconductor nanowires (NW) are rapidly emerging as a new generation of miniaturized on-chip coherent light sources by virtue of their unique geometry. In particular, due to the natural Fabry-Perot resonators formed by guided modes between the NW-endfacets, combined with the possibilities for direct monolithic integration on Si, NW lasers offer attractive applications in future optical interconnects and data communication.

Until now these NW lasers are driven optically, an electrical operation of the device is crucial for all applications. For this purpose, electrical contacts and a precise control of the doping profile in the device is required. The aim of this maswters thesis project is to develop appropriate process technologies to contact doped core-multishell NWs in a lying and standing geometry. This enables the characterization of the devices with respect to their electrical properties. Moreover, a comprehensive 2D-3D TCAD model of the NW laser will be implemented to simulate the electrothermal performance of the device. Adjusting the simulations to the measurement results enables the optimization of the doping profile and the heterostructure design of the NW laser. Experience in the area of clean room fabrication or TCAD modeling is a benefit, but secondary to motivation, commitment and a willingness to work as part of a team.

Applications should be sent to Prof. Finley (finley@wsi.tum.de)with c.c. to Jochen Bissinger (Jochen.Bissinger@wsi.tum.de). Please include a brief CV, a copy of your Bachelor Thesis and a transcript of your grades.

geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Jonathan Finley
Teaching Photons New Tricks: Mode control in monolithically integrated nanowire lasers
Reliable technologies for the monolithic integration of lasers onto silicon represent the holy grail for chip-level optical interconnects. In this context, nanowires (NW) fabricated using III−V semiconductors are of strong interest since they can be grown site-selectively on silicon using conventional epitaxial approaches. Their unique one-dimensional structure and high refractive index naturally facilitate low loss optical waveguiding and optical recirculation in the active NW region. In this versatile and ambitious project, a comprehensive 2D-3D TCAD model will be implemented to analyze a monolithically integrate NW laser on a silicon-on-insulator (SOI) substrate. The aim of this project is to design the cavity and the dielectric environment of the NW laser to control and manipulate its optical properties. Furthermore, the developed design approaches will be realized by different nanofabrication technologies and characterized by several optical measurements. Experience in the area of clean room fabrication or TCAD modeling is a benefit, but secondary to motivation and commitment. Applications should be sent to Prof. Finley (finley@wsi.tum.de) including Jochen Bissinger on c.c. (Jochen.Bissinger@wsi.tum.de). Please include your CV, a copy of your Bachelor Thesis and a transcript of your grades.
geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Jonathan Finley
Transient Rayleigh Scattering of single SixGe1-x Nanowires

Direct bandgap silicon has been the holy grail of the semiconductor industry for many years, since it would allow integrating both electronic and optical functionalities on a silicon platform. Recent theoretical calculations1 predict that hexagonal crystal phase SixGe1-x features a tunable direct bandgap from 1380 - 1800 nm, exactly coinciding with the low loss window for optical fibre communications. A generic approach to grow hexagonal SixGe1-x nanowires with a tunable composition has been developed by our cooperation partner2.

As a master student of this project you will take part in an interdisciplinary research effort intended to demonstrate efficient light emission from direct bandgap SixGe1-x, followed by the development of a SixGe1-x nanolaser. Possible applications of such nanoscale light sources include silicon-based on-chip optical interconnects and a silicon-compatible quantum light source.

The main focus of the thesis will be optical measurements conducted with a low- temperature photoluminescence setup for single and ensemble nanowires. After an initial sample pre-characterization phase, we will develop a Transient Rayleigh Scattering setup, as depicted schematically in figure c). This pump- probe experiment will be utilized for the ultrafast characterization of charge carrier dynamics in nanowire lasers.

If you are interested, please contact guenther.reithmaier@wsi.tum.de 

geeignet als
  • Masterarbeit Physik der kondensierten Materie
Themensteller(in): Jonathan Finley

Abgeschlossene und laufende Abschlussarbeiten an der Arbeitsgruppe

Characterization of doped GaAs-AlGaAs core-multishell nanowire lasers
Abschlussarbeit im Masterstudiengang Physics (Applied and Engineering Physics)
Themensteller(in): Jonathan Finley
Chiral coupling of quantum emitters to plamonic Waveguides on WSe2
Abschlussarbeit im Masterstudiengang Physics (Applied and Engineering Physics)
Themensteller(in): Jonathan Finley
Continuous Wave Lasing and First-Order Coherence of Semiconductor Nanowire Lasers
Abschlussarbeit im Masterstudiengang Physik (Physik der kondensierten Materie)
Themensteller(in): Jonathan Finley
Low Power Hybrid Plasmonic Modulator For On-Chip Optical Interconnects
Abschlussarbeit im Masterstudiengang Physics (Applied and Engineering Physics)
Themensteller(in): Jonathan Finley
Correlated He-Ion microscopy and atomic force microscopy of III-V semiconductor heterostructures
Abschlussarbeit im Bachelorstudiengang Physik
Themensteller(in): Jonathan Finley
p-type modulation-doped GaAs-AlGaAs nanowire transistor
Abschlussarbeit im Masterstudiengang Physics (Applied and Engineering Physics)
Themensteller(in): Jonathan Finley
Simulation und optische Oharakterisierung
Abschlussarbeit im Bachelorstudiengang Physik
Themensteller(in): Jonathan Finley
Transient Rayleigh Scattering of single SixGe1-x Nanowires
Abschlussarbeit im Masterstudiengang Physik (Physik der kondensierten Materie)
Themensteller(in): Jonathan Finley

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.