Prof. Ph.D. Jonathan Finley

Photo von Prof. Jonathan Finley.
Telefon
+49 89 289-12770
Raum
5112.01.209S
E-Mail
finley@mytum.de
Links
Homepage
Visitenkarte in TUMonline
Arbeitsgruppe
Halbleiter-Nanostrukturen und -Quantensysteme
Funktion
Professur für Halbleiter-Nanostrukturen und -Quantensysteme
Zusatzinfo
Leading the Nanostructure Spectroscopy Group at Walter Schottky Institut of TUM: focus on understanding, manipulating and exploiting electronic, spin and photonic quantum phenomena in semiconductors and nanostructured electronic and photonic materials. Major research interests include: optical, electronic and spintronic properties of semiconductor quantum dots and wires fabricated from Aimonides, group-IV materials (Si, SiGe, C) and II-VI semiconductors and oxides (CdSe, ZnO). Another major arm of our research concerns quantum optical studies of dielectric and metallic nano-photonic materials and the application of such systems for applications in quantum information processing, metrology and sensing.
Sprechstunde
Freitag 9:00 bis 11:00

Lehrveranstaltungen und Termine

Titel und Modulzuordnung
ArtSWSDozent(en)Termine
Solid State Spectroscopy
Zuordnung zu Modulen:
VU 3 Finley, J.
Mitwirkende: Müller, K.
Dienstag, 14:00–16:00
Experimentalphysik 3 in englischer Sprache
Zuordnung zu Modulen:
VO 2 Finley, J. Mittwoch, 12:00–14:00
What’s hot ... what’s not?
Zuordnung zu Modulen:
HS 2 Finley, J.
Mitwirkende: Müller, K.
Freitag, 12:00–14:00
FOPRA-Versuch 01: Ballistischer Transport (Flippern mit Elektronen)
Zuordnung zu Modulen:
PR 1 Finley, J.
Mitwirkende: Becker, J.
FOPRA-Versuch 14: Optische Absorption
Zuordnung zu Modulen:
PR 1 Finley, J.
Mitwirkende: Wierzbowski, J.
FOPRA-Versuch 24: Feldeffekt-Transistor (MOSFET)
Zuordnung zu Modulen:
PR 1 Finley, J.
Mitwirkende: Flassig, F.
FOPRA-Versuch 45: Optische Eigenschaften von Halbleiter-Quantenfilmen
Zuordnung zu Modulen:
PR 1 Finley, J.
Mitwirkende: Simmet, T.
Munich Physics Colloquium
Zuordnung zu Modulen:
KO 2 Finley, J. Krischer, K. Zacharias, M. Montag, 17:15–19:00
Montag, 17:15–19:00
sowie Termine in Gruppen

Ausgeschriebene Angebote für Abschlussarbeiten

Attaching wires to doped GaAs-AlGaAs core-multishell nanowire lasers

Semiconductor nanowires (NW) are rapidly emerging as a new generation of miniaturized on-chip coherent light sources by virtue of their unique geometry. In particular, due to the natural Fabry-Perot resonators formed by guided modes between the NW-endfacets, combined with the possibilities for direct monolithic integration on Si, NW lasers offer attractive applications in future optical interconnects and data communication.

Until now these NW lasers are driven optically, an electrical operation of the device is crucial for all applications. For this purpose, electrical contacts and a precise control of the doping profile in the device is required. The aim of this maswters thesis project is to develop appropriate process technologies to contact doped core-multishell NWs in a lying and standing geometry. This enables the characterization of the devices with respect to their electrical properties. Moreover, a comprehensive 2D-3D TCAD model of the NW laser will be implemented to simulate the electrothermal performance of the device. Adjusting the simulations to the measurement results enables the optimization of the doping profile and the heterostructure design of the NW laser. Experience in the area of clean room fabrication or TCAD modeling is a benefit, but secondary to motivation, commitment and a willingness to work as part of a team.

Applications should be sent to Prof. Finley (finley@wsi.tum.de)with c.c. to Jochen Bissinger (Jochen.Bissinger@wsi.tum.de). Please include a brief CV, a copy of your Bachelor Thesis and a transcript of your grades.

geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Jonathan Finley
Probing multiphoton wave packets using superconducting nanowire detectors

Within the last years, superconducting single photon detectors (SSPDs) have proven to be one of the most versatile detectors for visible to infrared wavelengths. They outperform other single photon detectors in terms of detection efficiency (ca 90%), timing resolution (<20ps) and dark count rates (<1cps) and can be modified to detect the number of photons simultaneously hitting the detector (photon-number resolution, PNR) [1]. They can be integrated into on-chip photonic circuits, making them highly promising for future chip-based optical quantum applications.

In this project we aim at adding photon-number resolving capabilities to optical waveguide-integrated SSPDs to detect multi-photon states in optical cavities. We will use established techniques to sputter thin NbN superconducting films and pattern them using e-beam lithography to fabricate the superconducting detectors. These detectors will be tested and characterised at low temperatures in an optical microscopy setup to probe the fundamental detection mechanisms. Furthermore, the detector design will be optimised concerning the photon number resolution capability. In an ambitious second step we will modify the detector design to include an optical gating in the detector and perform pump-probe spectroscopy-like characterisation of this new kind of devices.

During the project, you will work in close collaboration with a Ph.D. student, therefore, teamwork is crucial on this project. Some experience in the areas of optics, electronics, programming or cleanroom fabrication will be beneficial, but secondary to your personal motivation and commitment. 

Applications should be sent to Prof. Finley (finley@wsi.tum.de) including Fabian Flassig on c.c. (fabian.flassig@wsi.tum.de). Please include your CV, a copy of your Bachelor Thesis and a transcript of your grades.

[1] F. Natarajan et al. Supercond. Sci. Technol. 25 063001 (2012)

 
geeignet als
  • Masterarbeit Physik der kondensierten Materie
Themensteller(in): Jonathan Finley
Teaching Photons New Tricks: Mode control in monolithically integrated nanowire lasers
Reliable technologies for the monolithic integration of lasers onto silicon represent the holy grail for chip-level optical interconnects. In this context, nanowires (NW) fabricated using III−V semiconductors are of strong interest since they can be grown site-selectively on silicon using conventional epitaxial approaches. Their unique one-dimensional structure and high refractive index naturally facilitate low loss optical waveguiding and optical recirculation in the active NW region. In this versatile and ambitious project, a comprehensive 2D-3D TCAD model will be implemented to analyze a monolithically integrate NW laser on a silicon-on-insulator (SOI) substrate. The aim of this project is to design the cavity and the dielectric environment of the NW laser to control and manipulate its optical properties. Furthermore, the developed design approaches will be realized by different nanofabrication technologies and characterized by several optical measurements. Experience in the area of clean room fabrication or TCAD modeling is a benefit, but secondary to motivation and commitment. Applications should be sent to Prof. Finley (finley@wsi.tum.de) including Jochen Bissinger on c.c. (Jochen.Bissinger@wsi.tum.de). Please include your CV, a copy of your Bachelor Thesis and a transcript of your grades.
geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Jonathan Finley
Transient Rayleigh Scattering of single SixGe1-x Nanowires

Direct bandgap silicon has been the holy grail of the semiconductor industry for many years, since it would allow integrating both electronic and optical functionalities on a silicon platform. Recent theoretical calculations1 predict that hexagonal crystal phase SixGe1-x features a tunable direct bandgap from 1380 - 1800 nm, exactly coinciding with the low loss window for optical fibre communications. A generic approach to grow hexagonal SixGe1-x nanowires with a tunable composition has been developed by our cooperation partner2.

As a master student of this project you will take part in an interdisciplinary research effort intended to demonstrate efficient light emission from direct bandgap SixGe1-x, followed by the development of a SixGe1-x nanolaser. Possible applications of such nanoscale light sources include silicon-based on-chip optical interconnects and a silicon-compatible quantum light source.

The main focus of the thesis will be optical measurements conducted with a low- temperature photoluminescence setup for single and ensemble nanowires. After an initial sample pre-characterization phase, we will develop a Transient Rayleigh Scattering setup, as depicted schematically in figure c). This pump- probe experiment will be utilized for the ultrafast characterization of charge carrier dynamics in nanowire lasers.

If you are interested, please contact guenther.reithmaier@wsi.tum.de 

geeignet als
  • Masterarbeit Physik der kondensierten Materie
Themensteller(in): Jonathan Finley

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.

Biophysik

Biologische Systeme, vom Protein bis hin zu lebenden Zellen und deren Verbänden, gehorchen physikalischen Prinzipien. Unser Forschungsbereich Biophysik ist deutschlandweit einer der größten Zusammenschlüsse in diesem Bereich.