de | en

Prof. Ph.D. Jonathan Finley

Photo von Prof. Jonathan Finley.
+49 89 289-12770
Visitenkarte in TUMonline
Halbleiter-Nanostrukturen und -Quantensysteme
Professur für Halbleiter-Nanostrukturen und -Quantensysteme
Leading the Nanostructure Spectroscopy Group at Walter Schottky Institut of TUM: focus on understanding, manipulating and exploiting electronic, spin and photonic quantum phenomena in semiconductors and nanostructured electronic and photonic materials. Major research interests include: optical, electronic and spintronic properties of semiconductor quantum dots and wires fabricated from Aimonides, group-IV materials (Si, SiGe, C) and II-VI semiconductors and oxides (CdSe, ZnO). Another major arm of our research concerns quantum optical studies of dielectric and metallic nano-photonic materials and the application of such systems for applications in quantum information processing, metrology and sensing.
Freitag 9:00 bis 11:00

Lehrveranstaltungen und Termine

Titel und Modulzuordnung
Experimentalphysik 4 in englischer Sprache
Zuordnung zu Modulen:
VO 2 Finley, J. Di, 14:00–16:00, PH HS1
Materials Science
Zuordnung zu Modulen:
VO 2 Finley, J. Mi, 14:00–16:00, PH HS3
Fr, 10:00–12:00, PH HS3
Aktuelle Themen der Halbleiter-Quantenphotonik
Zuordnung zu Modulen:
HS 2 Finley, J.
Mitwirkende: Müller, K.
Mo, 10:00–12:00, WSI 101S
Aktuelle Themen der integrierten Quanten-Photonik
Zuordnung zu Modulen:
HS 2 Finley, J.
Mitwirkende: Kaniber, M.
Mo, 08:30–10:00, WSI 101S
Übung zu Materialwissenschaften
Zuordnung zu Modulen:
UE 1
Leitung/Koordination: Finley, J.
Termine in Gruppen
Fachdiskussion zum Münchner Physik-Kolloquium
Zuordnung zu Modulen:
SE 2 Finley, J. Krischer, K.
FOPRA-Versuch 01: Ballistischer Transport (Flippern mit Elektronen)
Zuordnung zu Modulen:
PR 1 Finley, J.
Mitwirkende: Becker, J.
FOPRA-Versuch 14: Optische Absorption
Zuordnung zu Modulen:
PR 1 Finley, J.
Mitwirkende: Müller, K.
FOPRA-Versuch 15: Quanteninformation in Stickstoff-Fehlstellen-Zentren in Diamant
Zuordnung zu Modulen:
PR 1 Finley, J.
Mitwirkende: Braunbeck, G.
FOPRA-Versuch 24: Feldeffekt-Transistor (MOSFET)
Zuordnung zu Modulen:
PR 1 Finley, J.
Mitwirkende: Kaniber, M.
FOPRA-Versuch 45: Optische Eigenschaften von Halbleiter-Quantenfilmen
Zuordnung zu Modulen:
PR 1 Finley, J.
Mitwirkende: Simmet, T.
Mentorenprogramm im Bachelorstudiengang Physik (Professor[inn]en A–J)
Zuordnung zu Modulen:
KO 0.2 Auwärter, W. Back, C. Bandarenka, A. Barth, J. Bausch, A. … (insgesamt 21)
Leitung/Koordination: Höffer von Loewenfeld, P.
Münchner Physik-Kolloquium
Zuordnung zu Modulen:
KO 2 Finley, J. Krischer, K. Mo, 17:15–19:15, PH HS2
Mo, 17:15–19:15
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
SE 2 Finley, J. Holleitner, A. Sharp, I. Stutzmann, M. Di, 17:15–18:30, WSI 101S

Ausgeschriebene Angebote für Abschlussarbeiten

Exploring Exciton-Exciton Interactions in Atomically Thin Nanomaterials

Monolayer transition metal dichalcogenides (TMD) are “graphene-like” layered materials consisting of covalently bonded trilayers of atoms held together by weak van der Waals bonds . Unlike graphene that has vanishing bandgap, monolayer TMDs are direct gap semiconductors with bandgaps >2eV.  The weak dielectric screening results in them hosting very strongly bound 2D Wannier-Mott like excitons with binding energies >>kBT at room temperature and radii in the range of a couple of nm.  The excitonic photo-physics of such nanomaterials currently attracts a lot of attention with many key questions like: How do excitons in atomically thin materials interact with their environment? and What is the role of exciton-exciton interactions on the coherence and optical efficiency of such materials? 

This thesis is aimed at particularly capable students who are interested to join us to explore the fascinating photophysics of TMD heterostructures.  In the first part of the thesis you will build-up, test and control an optical fiber based tunable Fabry-Perot cavity formed between an ultralow-roughness mirror fabricated directly on the end facet of an optical fiber [1] and a high-reflectivity Distributed Bragg Reflector onto which the TMD-heterostructure is placed.  The separation between the fiber end facet and the lower DBR mirror will be piezo- stabilized to achieve ultra-high cavity finesse and tuned to controllably vary the frequency of the cavity mode and tune it through the exciton transition of the TMD.  Hereby, the coherent interaction between the cavity field and the exciton will be revealed by the observation of cavity polaritons [2].  Once developed at room temperature, the systems will aim to make measurements with the entire microscope at liquid helium temperatures where the light-matter interactions are much more coherent....  

You should:

(1) Be highly motivated, (2) Be practically minded, (3) Enjoy working with state of the art optics and with control electronics / computer control and be capable of programming (e.g. Labview, C++ , Python) (4) Be willing to work as part of a small team in a dark lab in the summertime....  

You’ll get:

(1) experience of performing sophisticated optical spectroscopy in state-of-the-art laboratories and (2) a sound understand / explore exciton-exciton interactions in TMD-nanomaterials and, hopefully, (3) a nice paper in a journal.


[1] D Hunger et al,  New J. Phys. 12 065038, (2010)

[2] S. Dufferwiel et al. Nature Communications 6, 8579 (October 2015)

INTERESTED?  The please E-Mail or come by my office for a discussion,. 


geeignet als
  • Bachelorarbeit Physik
  • Masterarbeit Physik der kondensierten Materie
Themensteller(in): Jonathan Finley
Nach oben