Theoretische Elementarteilchenphysik

Prof. Martin Beneke

Forschungsgebiet

Unser Forschungsgebiet ist die theoretische Elementarteilchenphysik. Wir untersuchen die Phänomenologie von Kollisionen in Teilchenbeschleunigern, höhere Ordnungen in der Störungstheorie, die Suche nach Physik jenseits des Standardmodells sowie die Physik des Standardmodells, die Physik schwerer Quarks (bottom, top), CP-Verletzung, die Physik der starken Wechselwirkung und einige Aspekte der Kosmologie/Dunkelmaterie.

Adresse/Kontakt

James-Franck-Str. 1/I
85748 Garching b. München
+49 89 289 12374
Fax: +49 89 289 14655

Mitarbeiterinnen und Mitarbeiter der Arbeitsgruppe

Professorinnen und Professoren

Mitarbeiterinnen und Mitarbeiter

Lehrangebot der Arbeitsgruppe

Lehrveranstaltungen mit Beteiligung der Arbeitsgruppe

Titel und Modulzuordnung
ArtSWSDozent(en)Termine
Computational Physics 2: Simulation of Classical and Quantum Mechanical Systems
Zuordnung zu Modulen:
VU 4 Recksiegel, S. Dienstag, 14:00–16:00
sowie Termine in Gruppen
Fortgeschrittene Quantenfeldtheorie
Zuordnung zu Modulen:
VU 6 Beneke, M. Donnerstag, 10:00–12:00
Mittwoch, 08:00–10:00
sowie einzelne oder verschobene Termine
sowie Termine in Gruppen
Parallelisierung von physikalischen Rechnungen auf GPUs mit CUDA
Zuordnung zu Modulen:
PS 2 Recksiegel, S. Donnerstag, 16:00–18:00
sowie einzelne oder verschobene Termine
Theoretical Particle Physics: Fields, Symmetries and Quantum Phenomena
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
HS 2 Beneke, M. Garbrecht, B. Weiler, A.
Preparation of Student Seminar Theoretical Particle Physics: Fields, Symmetries and Quantum Phenomena
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
UE 4 Beneke, M. Garbrecht, B. Weiler, A.
Masterkolloquium Theorie
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
KO 2 Beneke, M. Ibarra, A. Ratz, M. Weiler, A.
Präzisionsrechnungen und effektive Feldtheorie in der Hochenergiephysik
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
SE 2 Beneke, M.
Seminar über Theoretische Elementarteilchenphysik
Zuordnung zu Modulen:
SE 2 Beneke, M. Garbrecht, B. Ibarra, A. Ratz, M. Recksiegel, S. … (insgesamt 6) Donnerstag, 14:00–16:00
Donnerstag, 14:00–16:00

Ausgeschriebene Angebote für Abschlussarbeiten an der Arbeitsgruppe

Atomare Tests der Higgs-Yukawa Kraft

Since its discovery in July 2012 by CERN's Large Hadron Collider (LHC), the
study of the properties of the Higgs boson has become one of the top
subjects of investigation in particle physics. Despite the huge progress in
this respect over the last few years thanks to the overwhelming amount of
data gathered by the LHC, many questions about the Higgs boson will remain
unanswered even after the LHC ceases operation. In particular, the
light-quark and electron "Yukawa couplings", i.e. the interaction strength
between the Higgs boson and fundamental sub-atomic particles, as predicted
by the Standard Model (SM) of particle physics, are much too small for the
LHC to be able to measure them.

In this project an alternative approach based on precision atomic physics
will be studied. Specifically, the student will, for a set of (atomic)
systems of interest, (1) derive the Higgs-atom Yukawa potential by using the
simplest concepts of quantum field theory, (2) discuss its impact/strength
respect the other relevant potentials, (3) discuss the phenomenology of this
exotic interaction. The latter point is the core of the project as this
includes computation of the frequency shifts induced by the Yukawa
interaction. This is done by applying traditional methods of perturbation
theory in quantum mechanics.

Once this is achieved, two experimental inputs will be compared to the
calculations: (3.1) O(10^-18)-accurate frequency measurements of narrow
"atomic clock" transitions and (3.2) O(100mHz) precision measurement of
isotope shifts. The student will furthermore discuss the limitations of this
approach and argue that a numerical study is necessary in order to arrive to
the ultimate goal of probing the Higgs sector with atomic physics.

This project is based on the recent paper: Delaumay, Ozeri, Perez,
Soreq "Probing the Atomic Higgs Force" (arXiv:1601.05087)

Prerequisites: Quantum Mechanics, KTA I (Feynman
diagrams, Elementary Particle Physics)

geeignet als
  • Bachelorarbeit Physik
Themensteller(in): Martin Beneke
Berechnung der Dunkelmateriereliktdichte

The student will become familiar with the basic concepts of
cosmology and in particular the mechanisms of particle production in
the thermal plasma. As a part of the project the student will write a
numerical code computing the relic density using various algorithms for
handling stiff differential equations and investigate differences
between them. The project requires elementary knowledge of
Feynman diagrams for the computation of the annihilation cross section.

Prerequisites: Quantum Mechanics, KTA I (Feynman
diagrams, Elementary Particle Physics)

geeignet als
  • Bachelorarbeit Physik
Themensteller(in): Martin Beneke
Die Masse des bottom und charm Quarks

Since there are no isolated free quarks in nature their masses can
only be determined indirectly. The aim of this thesis is to determine
the masses of the bottom and charm quark from the properties of
quarkonium bound states of these quarks and the quark-antiquark
pair  production cross section at electron-positron colliders via a
dispersion relation.

While some familiarity with particle physics, e.g. from the KTA I course,
is expected, basic understanding of some aspects of relativistic quantum
field theory will be acquired during the course of this thesis.

Prerequisites: Quantum Mechanics, KTA I (Feynman
diagrams, Elementary Particle Physics)

geeignet als
  • Bachelorarbeit Physik
Themensteller(in): Martin Beneke
Zerfall und Physik des Muon Anti-Muon Bindungszustands

Exotic atoms containing muons are some of the best objects to study New
Physics. Among the pure leptonic bound states, the system composed of a muon
and an anti-muon, the so-called true muonium, is yet to be observed. For
positronium (a bound state of an electron and a positron), the spin singlet
decays into two photons, while the spin triplet decays into three photons. 
True muonium is heavy enough that its spin triplet can decay into an
electron-positron pair. The rate for this process is enhanced with respect
to the three-photon annihilation rate. The project consists of
three parts. 1) becoming familiar with the standard
derivation of para-positronium (spin singlet of electron-positron bound
state) decay rate into two photons. 2) calculating the decay rate of the
true muonium spin triplet state into the electron-positron pair and of the
spin singlet into two photons. 3) short overview of the experimental
prospects for true muonium production, the observation of its decays modes,
including the New Physics searches (charged lepton flavor violation,
heavy photons).

Prerequisites: Non-relativistic Quantum Mechanics, KTA I (Feynman
diagrams, Elementary Particle Physics)

geeignet als
  • Bachelorarbeit Physik
Themensteller(in): Martin Beneke

Abgeschlossene und laufende Abschlussarbeiten an der Arbeitsgruppe

Bound-state contributions to dark matter freeze-out and annihilation
Abschlussarbeit im Masterstudiengang Physik (Kern-, Teilchen- und Astrophysik)
Themensteller(in): Martin Beneke

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.