de | en

Prof. Dr. Alejandro Ibarra

Photo von Prof. Dr. Alejandro Ibarra.
Telefon
+49 89 289-12196
Raum
PH: 3338
E-Mail
ibarra@tum.de
Links
Homepage
Visitenkarte in TUMonline
Arbeitsgruppe
Theoretische Elementarteilchenphysik
Funktion
Professur für Theoretische Elementarteilchenphysik
Sprechstunde
Termine bitte nach vorheriger Absprache mit Frau Karin Ramm, Tel.: 089/289-12350

Lehrveranstaltungen und Termine

Titel und Modulzuordnung
ArtSWSDozent(en)Termine
Quantum Mechanics 2
Zuordnung zu Modulen:
VO 4 Ibarra, A. Mi, 12:00–14:00, PH HS2
Fr, 10:00–12:00, PH HS2
Exercise to Quantum Mechanics 2
Zuordnung zu Modulen:
UE 2 Herms, J. Rappelt, A. Strobl, P. Urban, K.
Leitung/Koordination: Ibarra, A.
Termine in Gruppen
Masterkolloquium Theorie
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
KO 2 Beneke, M. Ibarra, A. Weiler, A. Fr, 10:00–12:00, PH 3343
Fr, 10:00–12:00, PH 3343
Seminar über Theoretische Elementarteilchenphysik
Zuordnung zu Modulen:
SE 2 Beneke, M. Garbrecht, B. Ibarra, A. Recksiegel, S. Weiler, A. Do, 14:00–16:00, PH HS3
T30d-Journal-Club
Zuordnung zu Modulen:
SE 2 Ibarra, A. Mo, 14:00–16:00, PH 2271
Tutorenseminar zu Quantenmechanik 2
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
SE 2 Ibarra, A.

Ausgeschriebene Angebote für Abschlussarbeiten

Non-relativistic effective theory of dark matter-nucleon interactions

Various astronomical and cosmological observations point towards the existence of a non-luminous matter component in our Universe, dubbed dark matter. The whole body of observations is consistent with the dark matter being constituted by new particles not contained in the Standard Model. This hypothesis could be tested if dark matter particles have sizable interactions with the nucleons. If this is the case, dark matter particles traversing a detector located at Earth could scatter off the nuclei in the target material, producing a potentially detectable signal. Unfortunately, the theoretical interpretation of the experimental results is subject to our ignorance of the microphysics governing the dark matter interactions with the nucleons. Using the fact that dark matter particles in our Galaxy are expected to move non-relativistically, one can write down the most general form of the dark matter-nucleon interaction using the restrictions of Galilean invariance and momentum conservation. The goal of this thesis is to construct the full set of operators describing the non-relativistic dark matter-nucleon interaction, analyze the expected signals at direct detection experiments, and investigate the embedding of these non-relativistic operators into a relativistic framework.

geeignet als
  • Bachelorarbeit Physik
Themensteller(in): Alejandro Ibarra
Nach oben