de | en

Biomolekulare Nanotechnologie

Prof. Hendrik Dietz

Forschungsgebiet

We develop novel scientific devices and methods for applications in biomolecular physics, biological chemistry, and molecular medicine. To this end, we currently focus on using DNA as a programmable construction material for building nanometer-scale scientific devices with atomically precise features. We also customize proteins and create and study hybrid DNA-protein complexes. 3D transmission electron microscopy, atomic force microscopy, and single molecule methods such as optical trapping and fluorescence microscopy are among our routine analysis tools.

Adresse/Kontakt

Am Coulombwall 4a/II
85748 Garching b. München

Mitarbeiterinnen und Mitarbeiter der Arbeitsgruppe

Professor

Sekretariat

Wissenschaftlerinnen und Wissenschaftler

Andere Mitarbeiterinnen und Mitarbeiter

Gäste

Lehrangebot der Arbeitsgruppe

Lehrveranstaltungen mit Beteiligung der Arbeitsgruppe

Titel und Modulzuordnung
ArtSWSDozent(en)Termine
Physical Biology of the Cell 2 – Motors, Motors, Motors and Biological Design Principles
Zuordnung zu Modulen:
VO 2 Dietz, H. Di, 14:00–16:00, PH II 127
Current Developments in Biomolecular Nanotechnology
Zuordnung zu Modulen:
HS 2 Dietz, H. Mo, 14:00–17:00, ZNN 2.003
Seminar to Physical Biology of the Cell 2: Current literature on cell biophysics
Zuordnung zu Modulen:
HS 2 Dietz, H. Di, 16:00–18:00, PH 2271
Bio-Design-Journal-Club "Drafting/Scetching/Scientific Publishing"
Zuordnung zu Modulen:
SE 2 Dietz, H. Mo, 17:00–18:30, ZNN 2.003
FOPRA-Versuch 73: DNS-Origami
Zuordnung zu Modulen:
PR 1 Dietz, H.
Mitwirkende: Bertosin, E.Pumm, A.Stömmer, P.
Mentorenprogramm im Bachelorstudiengang Physik (Professor[inn]en A–J)
Zuordnung zu Modulen:
KO 0.2 Auwärter, W. Back, C. Bandarenka, A. Barth, J. Bausch, A. … (insgesamt 22)
Leitung/Koordination: Höffer von Loewenfeld, P.

Ausgeschriebene Angebote für Abschlussarbeiten an der Arbeitsgruppe

Analysing Structural Heterogeneity in 3D DNA Origami

DNA origami enables us to build complex structures with sub-nanometer precision. We designed and built a nanoscale force spectrometer which consists of two beams and a spring mechanism that generates a force in-between them.

This thesis project focuses on solving the 3 dimensional structure of this DNA origami object, analysing its conformational states and deducing an energy landscape from them.

The project will start in March 2019. Basic programming skills welcome but not required.

geeignet als
  • Bachelorarbeit Physik
Themensteller(in): Hendrik Dietz
Cryo EM of a rotary DNA origami complex

DNA origami enables us to build complex structures with sub-nanometer precision. We designed and built a rotary complex in which the single subunits may adopt different conformations during the rotational motion.

This thesis project focuses on using cryo electron microscopy to 3D reconstruct the rotating apparatus and to investigate the interactions among the subunits in different rotational states.

We are looking for a student that has some basic knowledge in using terminal commands. The project will start in March 2019. 

geeignet als
  • Bachelorarbeit Physik
Themensteller(in): Hendrik Dietz

Abgeschlossene und laufende Abschlussarbeiten an der Arbeitsgruppe

Interferometric scattering-based mass spectrometry of DNA-Origami
Abschlussarbeit im Masterstudiengang Physik (Biophysik)
Themensteller(in): Hendrik Dietz
Nach oben