de | en

Hadronenstruktur und Fundamentale Symmetrien

Prof. Stephan Paul

Forschungsgebiet

Our group involved in a number of research projects dealing with high energy particle physics and neutron physics.

Adresse/Kontakt

James-Franck-Str. 1/I
85748 Garching b. München
+49 89 289 12572
Fax: +49 89 289 12570

Mitarbeiterinnen und Mitarbeiter der Arbeitsgruppe

Professorinnen und Professoren

Mitarbeiterinnen und Mitarbeiter

Lehrangebot der Arbeitsgruppe

Lehrveranstaltungen mit Beteiligung der Arbeitsgruppe

Titel und Modulzuordnung
ArtSWSDozent(en)Termine
Kern-, Teilchen- und Astrophysik 2
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
VO 4 Paul, S. Vaudrevange, P. Di, 14:00–16:00, PH HS2
Mi, 08:30–10:00, PH HS2
Do, 14:00–16:00, PH HS2
Fr, 10:00–11:30, PH HS2
Fr, 12:00–14:00, PH HS2
Konzepte für zukünftige Hadroncolliderexperimente 2
Zuordnung zu Modulen:
VO 2 Kortner, O. Fr, 10:00–12:00, PH-Cont. C.3201
studium naturale Physik 2
Zuordnung zu Modulen:
VO 2 Fierlinger, P. Do, 14:00–16:15, WZW H14
Übung zu Kern-, Teilchen- und Astrophysik 2
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
UE 2
Leitung/Koordination: Paul, S.
Termine in Gruppen
Übung zu studium naturale Physik 2
Zuordnung zu Modulen:
UE 2
Leitung/Koordination: Fierlinger, P.
Termine in Gruppen
studium naturale Physik Praktikum 2
Zuordnung zu Modulen:
PR 2 Stoepler, R.
Leitung/Koordination: Fierlinger, P.

Ausgeschriebene Angebote für Abschlussarbeiten an der Arbeitsgruppe

Charakterisierung des Quenchverhaltens von supraleitenden Spulen

 

Die Arbeit soll anhand von vorhandenen Daten und mit Hilfe von neu zu nehmenden Datensets die Ausbreitung eines Quenches innerhalb eines Spulensystems charakterisieren. Dies geschieht im Rahmen der Spulentests für das PENeLOPE Experiment am MLL. Für die Messungen wird ein LabVIEW System verwendet um Temperatur- und Spannungsdaten zu loggen. Weiterhin sollten etwaige Verformungen der Spulen mit DMS vermessen werden. 

Kontakt: Dominic Gaisbauer 089 28912484 oder 0151 24034138 oder d.gaisbauer@tum.de

geeignet als
  • Bachelorarbeit Physik
Themensteller(in): Stephan Paul
Development of a Neural Network for Online Event Reconstruction for a Radiation Monitor

The Multi-purpose Active-target Particle Telescope (MAPT) is a newly developed radiation detector for space applications. The detector shall be used to monitor the radiation environment on spacecraft and satellites. It is most sensitive to low-energy protons and ions and can distinguish the particles by their interactions with the material of the detector.

In this thesis, a neural network shall be developed that can reconstruct the direction, energy, and species of the measured particle in near real time. You will have to design a network structure, train the network with simulation data, and assess its performance. The trained network shall then be ported to on a small on-board computer that can be implemented in MAPT.     

Tasks

  • Acquire necessary theoretical understanding of neural networks and the different architectures.
  • Implement a neural network in Python using existing libraries.
  • Train and validate the algorithm with detector data generated with the high-energy physics simulation tool Geant4.
  • Compare the performance of the network to existing analysis approaches.

Prerequisites

Experience in Python and C++ programming is helpful, but not required. An introductory course on C++ programming is offered.

Contact

Thomas Pöschl, Room PH1 3554, Thomas.poeschl@ph.tum.de

Prof. Stephan Paul, Room PH1 3263, stephan.paul@tum.de

geeignet als
  • Bachelorarbeit Physik
Themensteller(in): Stephan Paul
Development of a Neural Network for Online Event Reconstruction for a Radiation Monitor

The Multi-purpose Active-target Particle Telescope (MAPT) is a newly developed radiation detector for space applications. The detector shall be used to monitor the radiation environment on spacecraft and satellites. It is most sensitive to low-energy protons and ions and can distinguish the particles by their interactions with the material of the detector.

In this thesis, a neural network shall be developed that can reconstruct the direction, energy, and species of the measured particle in near real time. You will have to design a network structure, train the network with simulation data, and assess its performance. The trained network shall then be ported to on a small on-board computer that can be implemented in MAPT.     

Tasks

  • Acquire necessary theoretical understanding of neural networks and the different architectures.
  • Implement a neural network in Python using existing libraries.
  • Train and validate the algorithm with detector data generated with the high-energy physics simulation tool Geant4.
  • Compare the performance of the network to existing analysis approaches.

Prerequisites

Experience in Python and C++ programming is helpful, but not required. An introductory course on C++ programming is offered.

 

Contact

Thomas Pöschl, Room PH1 3554, Thomas.poeschl@ph.tum.de

Prof. Stephan Paul, Room PH1 3263, stephan.paul@tum.de

geeignet als
  • Masterarbeit Kern-, Teilchen- und Astrophysik
Themensteller(in): Stephan Paul
Evaluation of Scintillator Materials and Silicon Photomultipliers for a Compact Dosimeter

The Multi-purpose Active-target particle Telescope (MAPT) is a new particle detector for astrophysics and radiation monitoring purposes. The instrument is currently under development at our institute and comprises several sub-detectors. One of these sub-detectors shall be a general-purpose dosimeter for charged and uncharged radiation, which shall use scintillator material coupled to silicon photomultlipliers (SiPMs).

The purpose of this thesis is to find suitable scintillator—SiPM combinations and characterize them in order to find the optimal combination. You will have to familiarize yourself with scintillating materials and the working principle of SiPMs before identifying candidate combinations. Based on the requirements for the dosimeter, you will then have to determine appropriate figures of merit and design an experimental setup capable of measuring these parameters. The result of the thesis shall be a list of suitable scintillator—SiPM combinations that fulfill the given requirements, as well as an analysis identifying the optimal solution.


Tasks

  • Familiarize yourself with the physics of scintillators and photodetectors (SiPM).
  • Based on given requirements, identify possible scintillator—SiPM combinations.
  • Design, build, and use an experimental setup to quantify the figure of merit of every combination.
  • Verify suitability of chosen materials and detectors.
  • Identify “optimal” combination for use in final device.
  • Optional: If time allows, help design a detector layout and read-out electronics for the final device.

 

Contact

geeignet als
  • Bachelorarbeit Physik
Themensteller(in): Stephan Paul
Particle Identification for the Multi-purpose Active-target Particle Telescope

The Multi-purpose Active-target Particle Telescope (MAPT) is a newly developed radiation detector for space applications. The detector shall be used to monitor the radiation environment on spacecraft and satellites. It is most sensitive to low-energy protons and ions and can distinguish the particles by their interactions with the material of the detector.

In order to develop new particle-identification algorithms, a detailed simulation of the interactions of these particles and the response of the detector is needed. This can be achieved using the simulation framework Geant4, a common simulation tool for high-energy particle physics.

In this thesis, the response of the detector to different particle species shall be investigated. Therefore, the student has to conduct simulations and analyze the results systematically. For the analysis, an already existing analysis framework shall be used and extended.

 

Tasks

  • Acquire necessary theoretical understanding of interactions of particles with matter.
  • Conduct simulations of the detector using Geant4.
  • Systematically analyze the results and give a prospect of the separation power of the detector for different particle species.
  • Enhance the functionality of the MAPT analysis framework.

 

Prerequisites

Experience in C/C++ programming is helpful, but not required. An introductory course on C++ programming is offered.

 

Contact

Thomas Pöschl, Room PH1 3257, Thomas.poeschl@ph.tum.de

Prof. Stephan Paul, Room PH1 3263, stephan.paul@tum.de

geeignet als
  • Bachelorarbeit Physik
Themensteller(in): Stephan Paul
Simulationen von Magnetfeldern von supraleitenden Spulen

Die Arbeit soll anhand einer vorhandenen Spulengeometrie die entstehenden Magnetfelder simulieren. Weiterhin sollen die Einflüsse von magnetisierbaren Materialen innerhalb des Magnetfeldes simulieren und etwaige Fehler abschätzen. Die Simulation erfolgt mit dem OPERA Simulationsporgrammes.

Kontakt: Dominic Gaisbauer 089 28912484 oder 0151 24034138 oder d.gaisbauer@tum.de

geeignet als
  • Bachelorarbeit Physik
Themensteller(in): Stephan Paul
Weiterentwicklung einer Paulfalle für Demonstrationszwecke und Studentenexperimente

Die Arbeit soll als Gruppearbeit von zwei Studierenden durchgeführt werden. Das Thema sollte interdisziplinär in den Bereichen Physik (Prof. Paul) und Maschinenwesen (Prof. Neu) bearbeitet werden.

Das Thema wird in bewertbare einzelne Arbeitspakete aufgeteilt sein. Neben der Einarbeitung in das Thema der Kern und Teilchenphysik werden Fähigkeiten zur Team-Arbeit in Forschergruppen und Projektmanagement Fähigkeiten für Naturwissenschaftler weiterentwickelt. Die Projektlastenhefte werden gemeinsam erarbeitet.

Kontakt: Rainer Stoepler 089/ 28914272 oder 0162 2944773

geeignet als
  • Bachelorarbeit Physik
Themensteller(in): Stephan Paul

Abgeschlossene und laufende Abschlussarbeiten an der Arbeitsgruppe

Untersuchung der Modellabhängigkeit der Partialwellenanalyse des Drei-Pionen-Endzustandes
Abschlussarbeit im Bachelorstudiengang Physik
Themensteller(in): Stephan Paul
Nach oben