de | en

Nuclear, Particle, and Astrophysics for Students of Education

Module PH9117

This module handbook serves to describe contents, learning outcome, methods and examination type as well as linking to current dates for courses and module examination in the respective sections.

Module version of WS 2017/8 (current)

There are historic module descriptions of this module. A module description is valid until replaced by a newer one.

Whether the module’s courses are offered during a specific semester is listed in the section Courses, Learning and Teaching Methods and Literature below.

available module versions
WS 2017/8SS 2014

Basic Information

PH9117 is a semester module in German language at Master’s level which is offered in winter semester.

This Module is included in the following catalogues within the study programs in physics.

  • Physics Modules for Students of Education

If not stated otherwise for export to a non-physics program the student workload is given in the following table.

Total workloadContact hoursCredits (ECTS)
240 h 100 h 8 CP

Responsible coordinator of the module PH9117 is Stephan Paul.

Content, Learning Outcome and Preconditions


This module provides a conceptual introduction into nuclear and particle physics. The basic physical concepts are developed starting from experimental methods and results. Connections to astrophysics and to technical developments that are relevant for every-day life are drawn.


  • Building blocks of matter and fundamental interactions
  • History of the universe
  • Length, energy and time scales
  • Units
  • Range of exchange particles
  • Resolving power and wave length
  • Lorentz-vectors und Lorentz-scalars
  • Luminosity and cross section

Particle accelerators

  • Cosmic radiation
  • Van-de-Graaff accelerator
  • Cyclotron
  • Synchrotron
  • Beam focusing
  • Linear accelerator

Particle detectors

  • Energy loss of heavy charged particles (Bethe-Bloch formula)
  • Energy loss of electrons and positrons in matter
  • Multiple scattering
  • Ionisation chamber
  • Gas amplification
  • Geiger-Müller counter
  • Multi-wire proportional chamber
  • Drift chamber and time-projection chamber
  • Semiconductor detectors
  • Cherenkov detektors
  • Scintillation detectors
  • Interaction of photons with matter
  • Detection of gamma-rays
  • Photomultiplier tube
  • Calorimeter

Theoretical description of scattering reactions

  • Recap: Schrödinger equation
  • Klein-Gordon equation
  • Dirac equation
  • Feynman diagrams
  • Geiger-Marsden experiment
  • Rutherford cross section
  • Formfactor
  • Mott cross section and helicity

Atomic nuclei

  • Measurement of formfactors
  • Charge distribution in nuclei
  • Radii and masses of nuclei
  • Binding energies of nuclei (Bethe-Weizsäcker mass formula)

Building blocks of nuclei (nucleons)

  • Anomalous magnetic dipolmoment of nucleons
  • Elastic electron scattering off nucleons
  • Electric and magnetic formfactors of nucleons
  • Nucleon radius
  • Quasi-elastic electron scattering off nuclei
  • Inelastic electron scattering off nucleons

Quarks and strong interaction

  • Deep-inelastic electron scattering off nucleons
  • Quark-parton model and structure functions of nucleons
  • Quark flavors
  • Quark production in electron-positron annihilation
  • Hadronization and jets
  • Discovery of charm, bottom, and top quarks
  • Color charge, gluons, and quantum chromodynamics
  • Analogy: hydrogen atom, positronium and quarkonia
  • QCD-potential and excitation spektra of charmonium and bottomonium
  • Asymptotic freedom and confinement

Constituent quark model

  • Light-quark mesons
  • Isospin symmetry
  • Pseudoscalar mesons, vector mesons, and mesons with higher spins
  • Meson decays
  • Light-quark baryons
  • Baryon multiplets
  • Spin-flavor wave function of proton and neutron
  • Magnetic moments of baryons
  • Masses of light-quark hadrons
  • Further hadrons

Weak interaction: introduction

  • Matter particles of the Standard Model
  • Types of weak interactions
  • Leptonic, semi-leptonic and hadronic processes (charged current)
  • Lepton-number conservation and lepton-family-number conservation
  • Universality of the weak interaction
  • Quark mixing
  • Weak interaction via the neutral current
  • Neutrino mixing, neutrino oscillations, and neutrino masses


  • Discrete symmetries C, P, and T
  • Parity violations in the weak interaction
  • CP-symmetry
  • CPT-theorem

Weak interactions and the Standard Modell of particle physics

  • Helicity, chirality, and weak interaction
  • V-A theory
  • Decay of muon and pion
  • Properties of W and Z bosons
  • Number of light neutrino families and Z decay
  • Elektro-weak unification, symmetry breaking, and Higgs mechanism
  • Discovery of the Higgs boson at LHC
  • Summary: the Standard Model of particle physics
  • Physics beyond the Standard Model

Nuclear force

  • Nucleon-nucleon potential
  • Allowed states of the N-N system
  • The deuteron
  • Nature of the nuclear force
  • Meson exchange
  • Yukawa potential

Nuclear models

  • Fermi-gas model
  • Neutron stars
  • Shell model
  • Deformed nuclei

Nuclear decays

  • Decay law
  • beta decay, double-beta decay, and neutrinoless double-beta decay
  • alpha decay
  • Nuclear fission
  • Nuclear chain reaction and critical mass
  • Interaction of neutrons with matter
  • Nuclear reactor
  • Natural radioactivity

Nuclear fusion

  • Nuclear fusion in the sun
  • Fusion reactor

Learning Outcome

The students get an overview of the field. After successful completion of the module the students are able to

  1. know and to reproduce the elementary building blocks of matter and their fundamental interactions.
  2. know and to reproduce the fundamental theoretical concepts and models that nuclear and particle physics is based upon.
  3. understand how mesons, baryons, and nuclei are composed of the elementary building blocks.
  4. know and to reproduce the most important phenomena and applications of nuclear and particle physics.
  5. understand the relevance of nuclear and particle physics for astrophysics.


PH0001, PH0002, PH0003, PH0004, PH0005, PH0006, PH0007

Courses, Learning and Teaching Methods and Literature

Courses and Schedule

Learning and Teaching Methods

In der thematisch strukturierten Vorlesung werden die Lehrinhalte im Vortrag präsentiert und durch anschauliche Beispiele sowie durch Diskussion mit den Studierenden vermittelt. Dabei werden insbesondere mit Querverweisen zwischen den behandelten Themen und bereits früher vermittelten Grundlagen die universellen Konzepte der Physik aufgezeigt. Die Studierenden werden auch zur eigenständigen inhaltlichen Auseinandersetzung mit den behandelten Themen sowie zum Studium der zugehörigen Literatur motiviert.

In den Übungen lernen die Studierenden in Kleingruppen nicht nur den Lösungsweg nachzuvollziehen, sondern Aufgaben auch selbstständig zu lösen. Hierzu werden Aufgabenblätter angeboten, die die Studierenden zur selbstständigen Kontrolle sowie zur Vertiefung der gelernten Methoden und Konzepte bearbeiten sollen. In den Übungen werden die unter der Woche gerechneten Aufgaben von den Studierenden und einer/m wissenschaftlichen Mitarbeiter(in) an der Tafel vorgerechnet und besprochen. Die Übung bietet auch die Gelegenheit zur Diskussion und weitergehende Erläuterungen zum Vorlesungsstoff und bereitet konkret auf die Prüfungen vor.

Die verschiedenen Lernformate sind eng verzahnt und befinden sich im ständigen Austausch.


  • Slide presentation and/or presentation by digital document camera
  • Offline video streaming of the lecture (MP4)
  • Lecture material available by download
  • Problem sheets and solutions available by download
  • Links to example videos and supplemental informationen in the Internet


Particle physics

  • B. Povh: Teilchen und Kerne (Springer)
  • H. Frauenfelder und E. Henley: Subatomare Physik (Oldenbourg)
  • D. Perkins: Introduction to High Energy Physics (Cambridge)
  • B.R. Martin and G. Shaw: Particle Physics (Wiley & Sons)
  • F. Halzen and A.D. Martin: Quarks and Leptons (Wiley & Sons)
  • H.V. Klapdor-Kleingrothaus: Teilchenphysik ohne Beschleuniger (Teubner)

Nuclear physics

  • K.S. Kane: Nuclear Physics (Wiley & Sons)
  • W.N. Cottingham: Introduction to Nuclear Physics (Cambridge)
  • W.T. Hering: Angewandte Kernphysik (Teubner)
  • Y.M. Tsipenyuk: Nuclear Methods in Science and Technology (IOP Publishing)

Accelerators and particle detectors

  • K. Kleinknecht: Detectors for Particle Radiation (Cambridge Univ.)
  • K. Wille: Physics of Particle Accelerators (Oxford. Univ.)
  • W.R. Leo: Techniques for Nuclear and Particle Physics Experiments (Springer)
  • R. Hinterberger: Physik der Teilchenbeschleuniger (Springer)

School books

  • Fokus Physik - Gymnasium Bayern 12 (Cornelsen)
  • Physik Gymnasium Bayern 12 (Duden)

Module Exam

Description of exams and course work

There will be an oral exam of 40 minutes duration. Therein the achievement of the competencies given in section learning outcome is tested exemplarily at least to the given cognition level using comprehension questions.

For example an assignment in the exam might be:

  • Explain the working principle of a multi-wire proportional chamber.
  • What does the form factor of a particle describe?
  • How are mesons, baryons, and their antiparticles composed of quarks and antiquarks, respectively, in the constituent quark model?
  • Which exchange particles mediate the weak interaction?
  • Which symmetries are conserved in the three fundamental interactions of the standard model?
  • Which process makes the largest contribution to the energy production in the sun's interior?
  • How does the radius of a nucleus depend on the mass number?

Participation in the exercise classes is strongly recommended since the exercises prepare for the problems of the exam and rehearse the specific competencies.

Exam Repetition

The exam may be repeated at the end of the semester.

Top of page