de | en

Prof. Dr. Stephan Paul

Photo von Prof. Dr. Stephan Paul.
Phone
+49 89 289-12571
Room
3263
E-Mail
stephan.paul@tum.de
Links
Homepage
Page in TUMonline
Group
Hadronic Structure and Fundamental Symmetries
Job Title
Professorship on Hadronic Structure and Fundamental Symmetries

Courses and Dates

Title and Module Assignment
ArtSWSLecturer(s)Dates
Nuclear, Particle, and Astrophysics for Students of Education
eLearning course
Assigned to modules:
VO 4 Paul, S. singular or moved dates
Happy Hour for Particle and Nuclear Physics
eLearning course course documents
Assigned to modules:
HS 2 Paul, S.
Assisstants: Greenwald, D.
singular or moved dates
Exercise to Nuclear, Particle, and Astrophysics for Students of Education
eLearning course
Assigned to modules:
UE 2
Responsible/Coordination: Paul, S.
dates in groups
Revision Course to Happy Hour for Particle and Nuclear Physics
Assigned to modules:
RE 2
Responsible/Coordination: Paul, S.
Scientific Topics in Particle Physics for Students and Staff Members
course documents
Assigned to modules:
SE 2 Märkisch, B. Paul, S. singular or moved dates

Offered Bachelor’s or Master’s Theses Topics

Development and Integration of Algorithms for Scientific Satellites

The Laboratory for Rapid Space Missions at the Origins Cluster of Excellence focuses on the development of scientific instruments for compact satellite platforms, called CubeSats. These nanosatellites enable the fast and modular deployment of complete, autonomous satellite systems at low cost. 

Our research includes detectors to measure antimatter flux in low orbits, where scientific success relies on finding suitable algorithms and hardware platforms to filter and classify particle events. In addition, satellite-based science oftentimes requires precise determination of pointing direction, for which we are developing our own star tracker. We offer opportunities in the fields of data processing, machine learning and hardware design, which could include the following tasks:

  • Simulation and modeling of particle fluxes
  • Data processing for our antimatter detector, including neural networks, particle filters, and conventional classification approaches
  • Image processing and optical engineering for attitude determination with our star tracker
  • Identification of suitable hardware architectures and integration of your own software
  • Work with VHDL, TensorFlow, Python, Zemax, Geant4, Altium Designer

What we expect from you:

  • Capability for independent and self-reliant work
  • Motivation, creativity and general interest in data processing and machine learning
  • Hands-on mentality and ability to work in a small, interdisciplinary team
  • Experience in one or more of the above-mentioned programming languages appreciated

Are you interested in working in an exciting and challenging environment with state-of-the-art technologies? Let’s have a talk!

suitable as
  • Master’s Thesis Nuclear, Particle, and Astrophysics
Supervisor: Stephan Paul
Development and Integration of Algorithms for Scientific Satellites

The Laboratory for Rapid Space Missions at the Origins Cluster of Excellence focuses on the development of scientific instruments for compact satellite platforms, called CubeSats. These nanosatellites enable the fast and modular deployment of complete, autonomous satellite systems at low cost. 

Our research includes detectors to measure antimatter flux in low orbits, where scientific success relies on finding suitable algorithms and hardware platforms to filter and classify particle events. In addition, satellite-based science oftentimes requires precise determination of pointing direction, for which we are developing our own star tracker. We offer opportunities in the fields of data processing, machine learning and hardware design, which could include the following tasks:

  • Simulation and modeling of particle fluxes
  • Data processing for our antimatter detector, including neural networks, particle filters, and conventional classification approaches
  • Image processing and optical engineering for attitude determination with our star tracker
  • Identification of suitable hardware architectures and integration of your own software
  • Work with VHDL, TensorFlow, Python, Zemax, Geant4, Altium Designer

What we expect from you:

  • Capability for independent and self-reliant work
  • Motivation, creativity and general interest in data processing and machine learning
  • Hands-on mentality and ability to work in a small, interdisciplinary team
  • Experience in one or more of the above-mentioned programming languages appreciated

Are you interested in working in an exciting and challenging environment with state-of-the-art technologies? Let’s have a talk!

suitable as
  • Master’s Thesis Applied and Engineering Physics
Supervisor: Stephan Paul
Development of a Star Tracker for Compact Scientific Satellites

The Laboratory for Rapid Space Missions at the ORIGINS Cluster of Excellence develops scientific instruments for small-satellite missions. For the ComPol mission, which measures the polarization of X-rays emitted by the Cygnus X-1 binary system, a highly precise real-time determination of the satellite’s attitude is essential. 

To achieve this, we aim to develop our own star-tracking system and tune the tracker’s properties exactly to the observed area in terms of source spectrum, light intensity, geometry, and spatial restrictions. Star trackers are very common instruments in satellite technology that compare an observed star formation with a database to calculate the exact spatial orientation of the satellite. 

Your objectives include the optical design, assembly, calibration, and testing of a prototype system, the analysis of test data, and assistance with the mechanical layout, hardware design, and integration of a flight system. You will gain skills in optical engineering, including knowledge of the Zemax simulation software, programming and data analysis with Python, mechanical design, and general satellite technology at the interface between science and engineering. If successful, the system you design will be part of future missions to the ISS or on satellites!

We expect a high degree of self-responsibility, motivation, creativity, and a good share of curiosity. We offer work in a small, interdisciplinarian team, a broad combination of topics, and enough freedom for self-development and your own ideas. Knowledge of one or more of the above-mentioned fields is highly welcome, but not required.



Primary point of contact: Peter Hinderberger (peter.hinderberger@tum.de)

 
suitable as
  • Master’s Thesis Applied and Engineering Physics
Supervisor: Stephan Paul
Top of page