Prof. Dr. Stephan Paul

Photo von Prof. Dr. Stephan Paul.
Telefon
+49 89 289-12571
Raum
Physik I: 3263
E-Mail
stephan.paul@tum.de
Links
Homepage
Visitenkarte in TUMonline
Arbeitsgruppe
Hadronenstruktur und Fundamentale Symmetrien
Funktion
Professur für Hadronenstruktur und Fundamentale Symmetrien

Lehrveranstaltungen und Termine

Titel und Modulzuordnung
ArtSWSDozent(en)Termine
Experimentalphysik für Maschinenwesen
Zuordnung zu Modulen:
VU 5 Paul, S.
Mitwirkende: Friedrich, J.
Donnerstag, 16:00–18:00
Freitag, 10:00–11:00
sowie Termine in Gruppen
FPGA Based Detector Signal Processing
Zuordnung zu Modulen:
VU 4 Paul, S.
Mitwirkende: Bai, Y.Gaisbauer, D.Konorov, I.Levit, D.
Donnerstag, 14:00–16:00
sowie Termine in Gruppen
Happy Hour der Kern- und Teilchenphysik (Seminar für Studenten)
Zuordnung zu Modulen:
PS 2 Greenwald, D. Grube, B. Kaiser, N. Paul, S. Dienstag, 16:00–18:00
Satellitenbasierte Teilchenphysik
Zuordnung zu Modulen:
HS 4 Paul, S.
Mitwirkende: Pöschl, T.
Montag, 16:00–18:00
FOPRA-Versuch 19: Durchgang von Betastrahlen durch Materie
Zuordnung zu Modulen:
PR 1 Paul, S.
Mitwirkende: Saul, H.
FOPRA-Versuch 65: Positronen-Emissions-Tomographie (PET)
Zuordnung zu Modulen:
PR 1 Paul, S.
Mitwirkende: Gutsmiedl, E.
Kolloquium des Exzellenzclusters Universe
Zuordnung zu Modulen:
KO 2 Paul, S.
Seminar zu aktuellen Forschungsthemen in der Teilchenphysik (für Mitarbeiter und Studenten)
Zuordnung zu Modulen:
SE 2 Märkisch, B. Paul, S.
Seminar zur Physik der starken Wechselwirkung
Zuordnung zu Modulen:
SE 2 Brambilla, N. Fabbietti, L. Kaiser, N. Paul, S. Montag, 14:00–16:00

Ausgeschriebene Angebote für Abschlussarbeiten

Production and detection of meta-stable hydrogen atoms

 Context: The neutron decay is for many years subject of intense studies, as it reveals detailed information about the structure of the weak interaction. Using the two-body neutron decay into a hydrogen atom and an electron antineutrino n → H + the hyperfine population of the emerging hydrogen atom can be investigated.

Some of the produced hydrogen atoms (~ 10%) are in the meta-stable state 2S.

This special hydrogen atoms from the neutron decay are almost mono-energetic (325.7 eV), because of the nature of the two-body decay. 

In a first step we want to develop techniques to detect these special H(2S) atoms and analyze their properties (energy and hyperfine states).

We have recently constructed and built a time-of-flight setup (Bradbury-Nielsen gate chopper) with a strong proton source, by means of which we can measure the energy of charged particles with a resolution in the eV- region.

H(2S) can also be produced with protons, if they are passing a region with low pressure Cs-vapor. These atoms can be transformed in H-  by interaction with Ar-  vapor.

The 2S state can be detected by quenching the atom with the aid of an electric field to the 1S state. The emitted Lyman-alpha photons can be detected with a special photomultiplier.  The H- atoms can be measured with a magnetic spectrometer  or an electrostatic deflector.

All measurements with charged/neutral particles are done with a multi-channel-plate detector.

 

The working program of this master thesis is divided in:

 

-        Set up the Cs- and Ar- vapor system in the existing proton beam line

-        Set up of the quenching system with the photomultiplier

-        Design of the electrostatic deflector system (CAD and calculations with a beam optic program like TRANSPORT)

-        Measurements with the new setup.

 

Physics goals:

-        Determination of the charge transfer cross section of argon for H(2S) atoms for energies lower than 500 eV.

-        Development of a electrostatic deflector spectrometer

-        Optimization of a quenching system for H(2S) atoms

 

geeignet als
  • Masterarbeit Kern-, Teilchen- und Astrophysik
Themensteller(in): Stephan Paul

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.

Biophysik

Biologische Systeme, vom Protein bis hin zu lebenden Zellen und deren Verbänden, gehorchen physikalischen Prinzipien. Unser Forschungsbereich Biophysik ist deutschlandweit einer der größten Zusammenschlüsse in diesem Bereich.