Prof. Dr. Stephan Paul

Photo von Prof. Dr. Stephan Paul.
Telefon
+49 89 289-12571
Raum
Physik I: 3263
E-Mail
stephan.paul@tum.de
Links
Homepage
Visitenkarte in TUMonline
Arbeitsgruppe
Hadronenstruktur und Fundamentale Symmetrien
Funktion
Professur für Hadronenstruktur und Fundamentale Symmetrien

Lehrveranstaltungen und Termine

Titel und Modulzuordnung
ArtSWSDozent(en)Termine
Experimentalphysik für Maschinenwesen
Zuordnung zu Modulen:
VU 5 Paul, S.
Mitwirkende: Friedrich, J.
Donnerstag, 16:00–18:00
Freitag, 10:00–11:00
sowie Termine in Gruppen
FPGA Based Detector Signal Processing
Zuordnung zu Modulen:
VU 4 Paul, S.
Mitwirkende: Bai, Y.Gaisbauer, D.Konorov, I.Levit, D.
Donnerstag, 14:00–16:00
sowie Termine in Gruppen
Happy Hour der Kern- und Teilchenphysik (Seminar für Studenten)
Zuordnung zu Modulen:
PS 2 Greenwald, D. Grube, B. Kaiser, N. Paul, S. Dienstag, 16:00–18:00
Satellitenbasierte Teilchenphysik
Zuordnung zu Modulen:
HS 4 Paul, S.
Mitwirkende: Pöschl, T.
Montag, 16:00–18:00
FOPRA-Versuch 19: Durchgang von Betastrahlen durch Materie
Zuordnung zu Modulen:
PR 1 Paul, S.
Mitwirkende: Saul, H.
FOPRA-Versuch 65: Positronen-Emissions-Tomographie (PET)
Zuordnung zu Modulen:
PR 1 Paul, S.
Mitwirkende: Gutsmiedl, E.
Kolloquium des Exzellenzclusters Universe
Zuordnung zu Modulen:
KO 2 Paul, S.
Seminar zu aktuellen Forschungsthemen in der Teilchenphysik (für Mitarbeiter und Studenten)
Zuordnung zu Modulen:
SE 2 Märkisch, B. Paul, S.
Seminar zur Physik der starken Wechselwirkung
Zuordnung zu Modulen:
SE 2 Brambilla, N. Fabbietti, L. Kaiser, N. Paul, S. Montag, 14:00–16:00

Ausgeschriebene Angebote für Abschlussarbeiten

Analyse von hochreinem Helium-4

Eine neuartige Quelle für ultrakalte Neutronen wird derzeit am FRM II aufgebaut. Diese Quelle benutzt hochreines Helium-4 als Kühlmittel. Verunreinigungen mit Helium-3 müssen hierbei vermieden werden.
Um die Reinheit des Helium-4 zu bestimmen werden Gasproben am FRM II mit Neutronen bestrahlt. Durch Neutroneneinfang bildet das Helium-3 Tritium. Die Tritiumaktivität kann anschließend mit hoher Genauigkeit bestimmt werden.
Im Rahmen dieser Bachelorarbeit soll ein Messaufbau zur Bestimmung der Tritiumaktivität in Betrieb genommen, charakterisiert und optimiert werden.

CONTACT:  Dr. Andreas Frei
Email: Andreas Frei andreas.frei[at]tum.de

geeignet als
  • Bachelorarbeit Physik
Themensteller(in): Stephan Paul
Characterization of a Particle Detector

The Multi-purpose Active-target particle Telescope (MAPT) is a new particle detector for astrophysics and radiation monitoring purposes. The instrument is currently under development at our institute and comprises several sub-detectors. The main instrument is an active-target tracking detector made from scintillating plastic fibers.

To fully understand and quantify the physical processes governing the interactions of charged particles with the active target, we have built a small-scale experimental setup. This setup was recently subjected to a beam of protons and pions at the Paul Scherrer Institute in Switzerland. For a precise analysis of the results, we need a full characterization of the experiment. The purpose of this thesis is to measure the inherent properties of the setup, such as electrical and optical crosstalk, channel gains, and light yields. These values will be used in the analysis of the beam test data.

 

Tasks

  • Familiarize yourself with the physics of scintillators and photodetectors (SiPM).
  • Familiarize yourself with existing experimental setup and measurement principles.
  • Identify parameters to be measured and determine possible measurement strategies
    using a radioactive source.
  • Conduct measurements and analyze the results.
  • Use your results to provide the necessary parameters for analyzing the beam test data.

 Contact

MSc Martin Losekamm
Email:m.losekamm@tum.de

geeignet als
  • Bachelorarbeit Physik
Themensteller(in): Stephan Paul
Evaluation of Scintillator Materials and Silicon Photomultipliers for a Compact Dosimeter

The Multi-purpose Active-target particle Telescope (MAPT) is a new particle detector for astrophysics and radiation monitoring purposes. The instrument is currently under development at our institute and comprises several sub-detectors. One of these sub-detectors shall be a general-purpose dosimeter for charged and uncharged radiation, which shall use scintillator material coupled to silicon photomultlipliers (SiPMs).

The purpose of this thesis is to find suitable scintillator—SiPM combinations and characterize them in order to find the optimal combination. You will have to familiarize yourself with scintillating materials and the working principle of SiPMs before identifying candidate combinations. Based on the requirements for the dosimeter, you will then have to determine appropriate figures of merit and design an experimental setup capable of measuring these parameters. The result of the thesis shall be a list of suitable scintillator—SiPM combinations that fulfill the given requirements, as well as an analysis identifying the optimal solution.

Tasks

  • Familiarize yourself with the physics of scintillators and photodetectors (SiPM).
  • Based on given requirements, identify possible scintillator—SiPM combinations.
  • Design, build, and use an experimental setup to quantify the figure of merit of every combination.
  • Verify suitability of chosen materials and detectors.
  • Identify “optimal” combination for use in final device.
  • Optional: If time allows, help design a detector layout and read-out electronics for the final device.

Contact

MSc Martin Losekamm

Email: m.losekamm@tum.de

geeignet als
  • Bachelorarbeit Physik
Themensteller(in): Stephan Paul
Event Reconstruction and Particle Identification for the Multi-purpose Active-target Particle Telescope

The Multi-purpose Active-target Particle Telescope (MAPT) is a newly developed radiation detector for space applications. The detector shall be used to monitor the radiation environment on spacecraft and satellites. It is most sensitive to low-energy protons and ions and can distinguish the particles by their interactions with the material of the detector.

In this thesis, the existing event reconstruction software shall be extended to allow the identification of different particle species. Therefore, the student has to implement a detailed model of particle interactions in matter into the analysis framework. The software shall be validated using existing data from a prototype experiment conducted in 2016 and simulations. 

 Tasks

  • Acquire necessary theoretical understanding of interactions of particles with matter.
  •  Implement the relevant physical processes in the analysis framework.
  • Validate the algorithms and analyze existing data, as well as simulated data.

 Prerequisites

Experience in C/C++ programming is helpful, but not required. An introductory course on C++ programming is offered.

 

Contact

MSc Thomas Pöschl

Email: thomas.poeschl@ph.tum.de

geeignet als
  • Masterarbeit Kern-, Teilchen- und Astrophysik
Themensteller(in): Stephan Paul
Particle Identification for the Multi-purpose Active-target Particle Telescope

The Multi-purpose Active-target Particle Telescope (MAPT) is a newly developed radiation detector for space applications. The detector shall be used to monitor the radiation environment on spacecraft and satellites. It is most sensitive to low-energy protons and ions and can distinguish the particles by their interactions with the material of the detector.

In order to develop new particle-identification algorithms, a detailed simulation of the interactions of these particles and the response of the detector is needed. This can be achieved using the simulation framework Geant4, a common simulation tool for high-energy particle physics.

In this thesis, the response of the detector to different particle species shall be investigated. Therefore, the student has to conduct simulations and analyze the results systematically. For the analysis, an already existing analysis framework shall be used and extended.

 

Tasks

  • Acquire necessary theoretical understanding of interactions of particles with matter.
  • Conduct simulations of the detector using Geant4.
  • Systematically analyze the results and give a prospect of the separation power of the detector for different particle species.
  • Enhance the functionality of the MAPT analysis framework.

Prerequisites

Experience in C/C++ programming is helpful, but not required. An introductory course on C++ programming is offered.

Contact

Thomas Pöschl
Email: thomas.poeschl@ph.tum.de

geeignet als
  • Bachelorarbeit Physik
Themensteller(in): Stephan Paul
Production and detection of meta-stable hydrogen atoms

 Context: The neutron decay is for many years subject of intense studies, as it reveals detailed information about the structure of the weak interaction. Using the two-body neutron decay into a hydrogen atom and an electron antineutrino n → H + the hyperfine population of the emerging hydrogen atom can be investigated.

Some of the produced hydrogen atoms (~ 10%) are in the meta-stable state 2S.

This special hydrogen atoms from the neutron decay are almost mono-energetic (325.7 eV), because of the nature of the two-body decay. 

In a first step we want to develop techniques to detect these special H(2S) atoms and analyze their properties (energy and hyperfine states).

We have recently constructed and built a time-of-flight setup (Bradbury-Nielsen gate chopper) with a strong proton source, by means of which we can measure the energy of charged particles with a resolution in the eV- region.

H(2S) can also be produced with protons, if they are passing a region with low pressure Cs-vapor. These atoms can be transformed in H-  by interaction with Ar-  vapor.

The 2S state can be detected by quenching the atom with the aid of an electric field to the 1S state. The emitted Lyman-alpha photons can be detected with a special photomultiplier.  The H- atoms can be measured with a magnetic spectrometer  or an electrostatic deflector.

All measurements with charged/neutral particles are done with a multi-channel-plate detector.

 

The working program of this master thesis is divided in:

 

-        Set up the Cs- and Ar- vapor system in the existing proton beam line

-        Set up of the quenching system with the photomultiplier

-        Design of the electrostatic deflector system (CAD and calculations with a beam optic program like TRANSPORT)

-        Measurements with the new setup.

 

Physics goals:

-        Determination of the charge transfer cross section of argon for H(2S) atoms for energies lower than 500 eV.

-        Development of a electrostatic deflector spectrometer

-        Optimization of a quenching system for H(2S) atoms

 

geeignet als
  • Masterarbeit Kern-, Teilchen- und Astrophysik
Themensteller(in): Stephan Paul
Simulation of the Antiproton Flux in the Atmosphere

High energy cosmic-ray particles create antiprotons in interactions with molecules in the upper atmosphere. The flux characteristics of these antiprotons can be used to probe models of production and transport of particles in the atmosphere. Deviations of the measured flux from our models can indicate new mechanisms or sources of antiprotons.   

Several balloon-borne experiments have measured this particle flux in the last couple of years. In this thesis, these results shall be compared to simulations and to validate the current implementations of antiproton-production mechanisms in the high-energy simulation framework Geant4.

 

Tasks

  • Acquire necessary theoretical understanding of antiproton production and transport mechanisms in Earth’s atmosphere.
  • Conduct simulations of cosmic-ray interactions in the atmosphere using the simulation tool PLANETOCOSMICS, which is based on the high-energy simulation framework Geant4 (programming language C++).
  • Compare the results to measurements and interpret the findings.

Contact

MSc Thomas Pöschl
Email: thomas.poeschl@tum.de

geeignet als
  • Bachelorarbeit Physik
Themensteller(in): Stephan Paul

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.

Biophysik

Biologische Systeme, vom Protein bis hin zu lebenden Zellen und deren Verbänden, gehorchen physikalischen Prinzipien. Unser Forschungsbereich Biophysik ist deutschlandweit einer der größten Zusammenschlüsse in diesem Bereich.