de | en

Physics of Energy Conversion and Storage

Prof. Aliaksandr Bandarenka

Research Field

We conduct research in the area of the physics of energy conversion and storage. The main topics include the design and implementation of functional materials and a better understanding and characterization of electrified interfaces. The material design is based on a bottom-up approach using input from electrochemical surface science and starting from model surfaces.

Address/Contact

James-Franck-Str. 1
85748 Garching b. München

Members of the Research Group

Professor

Office

Scientists

Students

Other Staff

Teaching

Course with Participations of Group Members

Titel und Modulzuordnung
ArtSWSDozent(en)Termine
Energie-Materialien 2
eLearning-Kurs
Zuordnung zu Modulen:
VO 2 Bandarenka, A. Fr, 14:00–16:00, virtuell
Electrified Solid/Liquid Interfaces: from Theory to Applications
Zuordnung zu Modulen:
HS 1 Bandarenka, A. Mo, 14:00–16:00, PH II 227
Energie-Materialien 2
Zuordnung zu Modulen:
HS 2 Bandarenka, A. Fr, 10:00–12:00, PH 3734
Electrified Interfaces and Catalysis
Zuordnung zu Modulen:
SE 2 Bandarenka, A. Mi, 13:00–15:00, PH 3076
FOPRA-Versuch 22: Laserinduzierte Stromtransientenmethode
Zuordnung zu Modulen:
PR 1 Bandarenka, A.
Mitwirkende: Sarpey, T.
FOPRA-Versuch 30: Elektrokatalyse (alkalische Wasserelektrolyse)
Zuordnung zu Modulen:
PR 1 Bandarenka, A.
Mitwirkende: Garlyyev, B.
Repetitorium zu Energie-Materialien 2
Zuordnung zu Modulen:
RE 2
Leitung/Koordination: Bandarenka, A.

Offers for Theses in the Group

Computational fast screening of core-shell nanoparticles for oxygen reduction reaction in fuel cells

Electrocatalysis technologies, including PEM fuel cells, can help to shape a sustainable energy future in which PEM fuel cells provide versatile stationary and portable power solutions. However, one key factor limiting their widespread commercialization are high costs for large platinum (Pt) loadings, which are required to catalyze the sluggish oxygen reduction reaction (ORR) at the fuel cell cathode. Thus, enhancing the catalyst activity with respect to the Pt mass is of great interest.

In this MSc work, we capitalize on data-driven design to propose new Pt catalysts with enhanced mass activities toward the ORR. We link experimental data with results from density functional theory (DFT) on Pt-based ORR catalysts to build a computational model which predicts mass activities.

The thesis will focus on generalizing a developed method based on generalized coordination numbers for high-throughput screenings to tailor electrocatalyst shapes and sizes toward optimized mass activities. In particular, we want to explore core-shell nanoparticles. In core-shell nanoparticles, the catalysis is driven on active Pt shells, but cheaper and more abundant metals at the core limit the precious Pt loading. 

Contact: Prof. Alessio Gagliardi alessio.gagliardi@tum.de or Prof. Aliaksandr Bandarenka bandarenka@ph.tum.de 

References

[1] M. Rueck, A. Bandarenka, F. Calle-Vallejo, A. Gagliardi, “Oxygen Reduction Reaction: Rapid Prediction of Mass Activity of Unstrained Nanostructured Platinum Electrocatalysts,” J. Phys. Chem. Lett., 2018, 9 (15), 4463-4468. DOI:10.1021/acs.jpclett.8b01864.

[2] B. Garlyyev(1), K. Kratzl(1), M. R¨uck(1), J. Michalicka, J. Fichtner, J. Macak, T. Kratky, S. Guenther, M. Cokoja, A.S. Bandarenka, A. Gagliardi, R.A. Fischer, “Optimizing the Size of Platinum Nanoparticles for Enhanced Oxygen Electro-Reduction Mass Activity,” Angew. Chem. Int. Ed., 2019, 58 (28), 9596-9600. DOI:10.1002/anie.201904492

[3] M. Rueck, A. Bandarenka, F. Calle-Vallejo, A. Gagliardi, “Fast Identification of Optimal Pure Platinum Nanoparticle Shapes and Sizes for Efficient Oxygen Electroreduction,” Nanoscale Adv., 2019, 1 (8), 2901–2909. DOI:10.1039/c9na00252a

[4] M. Rueck, B. Garlyyev, F. Mayr, A.S. Bandarenka, A. Gagliardi, “Oxygen Reduction Activities of Strained Platinum Core–Shell Electrocatalysts Predicted by Machine Learning,” J. Phys. Chem. Lett., 2020, 11 (5), 1773-1780. DOI:10.1021/acs.jpclett.0c00214

suitable as
  • Master’s Thesis Condensed Matter Physics
Supervisor: Aliaksandr Bandarenka
Improving the Stability Window of Aqueous Electrolytes as a Way Towards High-Energy Aqueous Potassium-Ion Batteries
suitable as
  • Bachelor’s Thesis Physics
Supervisor: Aliaksandr Bandarenka
Performance and Stability of Organic Anode Materials for Aqueous Potassium-Ion Batteries
suitable as
  • Bachelor’s Thesis Physics
Supervisor: Aliaksandr Bandarenka
 Performance and Stability of Prussian Blue Analogue Based Cathodes for Aqueous Potassium-Ion Batteries
suitable as
  • Bachelor’s Thesis Physics
Supervisor: Aliaksandr Bandarenka
Top-down approach for the synthesis of shape controlled nanoparticles
The thesis focuses on the facile synthesis of nanoparticles (NPs) by electrochemical erosion of different materials. NP can be immobilized on a support for applications in electro- and heterogeneous catalysis. Our unique approach involves applying an alternating voltage to a metal substrate placed in an electrolyte. The “green” method uses no further chemicals and allows controlling shape and size of the NPs adjusting parameters such as applied potential, frequency and electrolyte composition. Different characterization techniques such as TGA, XPS, XRD, SEM etc. will be used for the investigation of prepared materials and performance tests will be conducted. The contact persons are Dr. Elena Gubanova (elena.gubanova@tum.de) and Christian Schott (christian.schott@tum.de).
suitable as
  • Master’s Thesis Applied and Engineering Physics
Supervisor: Aliaksandr Bandarenka

Current and Finished Theses in the Group

Finding Active Sites on Carbon-Based Electrocatalysts Under Reaction Conditions Using EC-STM
Abschlussarbeit im Masterstudiengang Physics (Applied and Engineering Physics)
Themensteller(in): Aliaksandr Bandarenka
Understanding and characterization of solid Li-ion conducting electrolytes for the application in solvent-free produced all-solid-state batteries
Abschlussarbeit im Masterstudiengang Physik (Physik der kondensierten Materie)
Themensteller(in): Aliaksandr Bandarenka
Characterization of Slurry-Coated Copper Hexacyanoferrate Cathodes for Aqueous Sodium Ion Batteries
Abschlussarbeit im Bachelorstudiengang Physik
Themensteller(in): Aliaksandr Bandarenka
Electrochemical erosion as a tool for nanoparticle fabrication for electrocatalytic reactions
Abschlussarbeit im Masterstudiengang Physik (Physik der kondensierten Materie)
Themensteller(in): Aliaksandr Bandarenka
Influence of alkali metal cations on the double layer properties of Au/Pd electrodes
Abschlussarbeit im Bachelorstudiengang Physik
Themensteller(in): Aliaksandr Bandarenka
Modelling the physical properties of lithium metal at the interface of solid electrolytes
Abschlussarbeit im Masterstudiengang Physics (Applied and Engineering Physics)
Themensteller(in): Aliaksandr Bandarenka
Optimizing microlattices objekts with electroless metal deposition
Abschlussarbeit im Bachelorstudiengang Physik
Themensteller(in): Aliaksandr Bandarenka
Performance and Stability of Organic Anode Materials for Aqueous Potassium-Ion Batteries
Abschlussarbeit im Bachelorstudiengang Physik
Themensteller(in): Aliaksandr Bandarenka
 Performance and Stability of Prussian Blue Analogue Based Cathodes for Aqueous Potassium-Ion Batteries
Abschlussarbeit im Bachelorstudiengang Physik
Themensteller(in): Aliaksandr Bandarenka
Performance Prediction of PEM fuel cells based on impedance techniques
Abschlussarbeit im Masterstudiengang Physics (Applied and Engineering Physics)
Themensteller(in): Aliaksandr Bandarenka
Top of page