Prof. Dr. Aliaksandr Bandarenka

Photo von Aliaksandr Bandarenka Ph.D..
Telefon
+49 89 289-12531
Raum
PH: 3093
E-Mail
bandarenka@ph.tum.de
Links
Homepage
Visitenkarte in TUMonline
Arbeitsgruppe
Physik der Energiewandlung und -speicherung
Funktion
Professur für Physik der Energiewandlung und -speicherung

Lehrveranstaltungen und Termine

Ausgeschriebene Angebote für Abschlussarbeiten

Electrochemical-mechanical simulation of lithium-ion batteries

Lithium-ion-batteries are a key element of future mobility. Maximization of battery safety and lifetime is indispensable. Beside temperature and current, mechanical effects due to the swelling of the electrodes in operation also have a notable impact. If the battery separator is compressed inhomogeneous from the electrode swelling or due to the cell casing , effects like lithium-plating can occur which are a potential safety hazard. In the master the effect of inhomogeneous separator compression should be simulated by coupling electrochemical with mechanical simulations with focus on the factors: electrode and separator properties, effects from battery format, effects from temperature and current request. The simulations should be implemented in Comsol Multiphysics. The master thesis will be a joint supervision of the chair of Prof. Bandarenka and the chair of Prof. Lienkamp from the department of mechanical engineering. Initial knowledge about battery chemistry and especially the usage of Comsol Multiphysics is advantageous but not necessary. For further information contact: Dipl. Phys. Fabian Ebert; ebert@ftm.mw.tum.de; 089/289-15871.

geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Aliaksandr Bandarenka
Electrodeposition of Niobium from Ionic Liquids

Niobium (Nb) belongs to the group of refractory metals, and shows advanced properties such as high melting point and good hardness, due to the strong interatomic bonds1,2. Furthermore, niobium exhibits excellent chemical and corrosion resistance3. This makes Nb coatings very attractive for a broad spectrum of applications, like high temperature applications and corrosion resistant industrial equipment4.

Due to the low standard potential, it is not possible to electrodeposit niobium from aqueous solutions. Ionic liquids (ILs) are a good alternative, and first studies have demonstrated the general feasibility of Nb metal deposition from NbF5 containing ILs5. In this thesis, the electrochemical behavior of different Nb salts in several ionic liquids shall be studied in detail with the electrochemical quartz crystal microbalance technique (EQCM) and in-situ scanning tunneling microscopy. A network analyzer will be used to measure the admittance between the two Au electrodes (one serving as working electrode) of 10 MHz quartz resonators in parallel to the electrochemical measurements. The admittance curve can be fitted with a Lorentz function. In simple terms, from the change of the center frequency (resonance frequency of the quartz ) and the full width at half maximum (damping of the quartz), one can determine mass changes on the electrode, i.e. how much Nb has been deposited, if pure metallic Nb has been deposited, etc. However, also other effect like changes in the viscosity of the electrolyte at the interface may be detected. It is known from literature5,6 that the IL/solid interface shows a very complex multilayer structure that can hinder metal cations from approaching the electrode surface, and that additives can disturb these layers. In preliminary experiments, addition of Li salts led to much larger current densities and mass changes from NbF5. The use of NbCl5 as precursor led to very interesting results. Five distinct peaks were observed in the ionic liquids that were correlated with changes in the EQCM. The origin of this behavior shall be investigated in detail.

 

Contact: Dr. Oliver Schneider oliver_m.schneider@tum.de

 

References:

1. S. Zein El Abedin, H.K. Farag, E.M. Moustafa, U. Welz-Biermann, F. Endres. Phys.Chem.Chem.Phys. 7 (2005) 2333

2. N. Borisenko, A. Ispas, E. Zschippang, Q. Liu, S. Zein El Abedin, A. Bund, F. Endres, Electrochim. Acta, 54 (2009) 1519

3. V. Phama et al., Thin Solid Films, 536(2013) 269

4. F. Cardarelli, Int. J. of Refractory Metals & Hard Materials, 14(1996) 3655.

5 T. Carstens, A. Ispas, N. Borisenko, R. Atkin, A. Bund, F. Endres, Electrochim. Acta 197 (2016) 374

6. A. Elbourne, S. McDonald, K. Voïchovsky, F. Endres, G. G. Warr, R. Atkin, ACS Nano 9 (2015) 7608

geeignet als
  • Bachelorarbeit Physik
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Aliaksandr Bandarenka

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.

Biophysik

Biologische Systeme, vom Protein bis hin zu lebenden Zellen und deren Verbänden, gehorchen physikalischen Prinzipien. Unser Forschungsbereich Biophysik ist deutschlandweit einer der größten Zusammenschlüsse in diesem Bereich.