de | en

Prof. Dr. Aliaksandr Bandarenka

Photo von Prof. Dr. Aliaksandr S. Bandarenka
Telefon
+49 89 289-12531
Raum
PH: 3093
E-Mail
bandarenka@ph.tum.de
Links
Homepage
Visitenkarte in TUMonline
Arbeitsgruppe
Physik der Energiewandlung und -speicherung
Funktion
Professur für Physik der Energiewandlung und -speicherung

Lehrveranstaltungen und Termine

Titel und Modulzuordnung
ArtSWSDozent(en)Termine
Energy Materials 1
Zuordnung zu Modulen:
VO 2 Bandarenka, A. Fr, 10:00–12:00, PH HS3
Experimental Physics 3 in English
Zuordnung zu Modulen:
VO 2 Bandarenka, A. Mo, 14:00–16:00, PH HS1
Electrified Solid/Liquid Interfaces: from Theory to Applications
Zuordnung zu Modulen:
HS 1 Bandarenka, A. Mo, 14:00–15:00, PH II 227
Energie-Materialien 1
Zuordnung zu Modulen:
HS 2 Bandarenka, A. Fr, 15:00–16:00, PH II 127
Electrified Interfaces and Catalysis
Zuordnung zu Modulen:
SE 2 Bandarenka, A. Mi, 13:00–15:00, PH 3076
Repetitorium zu Elektrisch geladene Fest/Flüssig-Grenzflächen: von der Theorie zu Anwendungen
Zuordnung zu Modulen:
RE 2
Leitung/Koordination: Bandarenka, A.
Repetitorium zu Energie-Materialien 1
Zuordnung zu Modulen:
RE 2
Leitung/Koordination: Bandarenka, A.

Ausgeschriebene Angebote für Abschlussarbeiten

Charakterisierung von Labor- und automobiler Brennstoffzellen mit Fokus auf Impedanzspektroskopie und zyklischer/linearer Voltammetrie. (70% of experiments at BMW)

1.           Problemstellung/ Forschungskontext

Brennstoffzellen werden in der Automobilindustrie derzeit als mögliche Alternative zu Verbrennungsmotoren mittlerweile in Serien- und Vorserienprodukten vermarktet. Den Kern des Brennstoffzellenautos bildet ein Stapel bestehend aus einigen hundert einzelnen Brennstoffzellen. Aufgrund der Serienschaltung dieser Zellen führt der Ausfall einer einzelnen Zelle bereits zum Versagen des Systems. Ausfälle einzelner Zellen entstehen u. a. aufgrund inhomogener Verteilungen von Temperatur, Strom, Gasen und Druck. Elektrochemische Impedanzspektroskopie ist eine Methode mit der aus dem elektrischen Signal einer Brennstoffzelle auf grundlegende physikalische und chemische Vorgänge innerhalb der Zelle geschlossen werden kann. Folglich ist eine Überwachung der oben genannten Betriebsparameter mit dieser Messmethode prinzipiell möglich.

(English description: Fuel cells are currently considered to be a possible alternative to conventional combustion engines within the automotive industry. Heart of a fuel cell electric vehicle is the fuel cell stack consisting of several hundreds of single fuel cells. Due to the electrical series connection of these cells the failure of a single one leads to failure of the whole system. Failures of single cells are often due to inhomogeneous distribution of operational parameters like temperature, current, gases and pressure. Electrochemical impedance spectroscopy is a method that uses electrical signals of each cell and connects it to basic physical/chemical mechanisms within the electrodes of the cell. Hence, monitoring of fuel cells using impedance spectroscopy is in principle possible.)

2.           Fragestellung und Ziel der Arbeit

Elektrochemische Impedanzspektroskopie an Brennstoffzellen kann Aufschluss über elektrochemische Vorgänge innerhalb der Elektroden geben. Die elektrochemischen Vorgänge innerhalb einer Zelle wiederum werden stark durch die Potentiale der Elektroden beeinflusst. Zyklische Voltammetrie ist eine Methode um diese Vorgänge gezielt Potentialabhängig zu analysieren. Ziel der Arbeit ist es, mittels zyklischer Voltammetrie und Impedanzspektroskopie grundlegende Vorgänge in Brennstoffzellen aufzuklären.

(English description: Electrochemical impedance spectroscopy can give information of electrochemical mechanisms within fuel cell electrodes. These mechanisms are in turn strongly influenced by the potential of the electrodes. Cyclic voltammetry is a method to directly analyze potential dependent mechanisms. Goal of this work is to combine cyclic voltammetric and impedance measurements of fuel cells in different operational points to determine fundamental mechanisms in automotive fuel cell operation.

3.           Material und Methoden

Für die Arbeit steht ein Prüfstand zum Betreiben von Laborzellen und/oder automobilen Brennstoffzellen zu Verfügung. Die Analysen werden an kommerziellen Zellen durchgeführt, deren Zellhardware ebenfalls vorhanden ist. Folgende Messmethoden sollen angewandt werden.

(English description. For the bachelor thesis a test rig for lab cells and automotive fuel cells is provided. The analysis will be done using commercial cells. The single cell hardware will be provided as well. The following methods are planned to be used):

·         Linear sweep voltammetry

·         Cyclic voltammetry

·         Hydrogen/air EIS

·         Polarization measurements

geeignet als
  • Bachelorarbeit Physik
Themensteller(in): Aliaksandr Bandarenka
Electrodeposition of refractory metals from ionic liquids

Refractory metals are metals like titanium, tantalum, niobium, tungsten, and molybdenum. They are high-melting reactive metals that in contact with air from a very thin oxide layer that protects them from further oxidation and renders them very stable towards corrosion. This makes them important as coatings for the chemical process industry [1, 2]. Ti and Ta also show excellent biocompatibility and are of interest for implant materials [3, 4]. Therefore, there is a strong interest in generating dense coatings with thicknesses in the µm-mm range of these materials. For other metals, like zinc, nickel, chromium, copper, gold, electroplating is the key technology to make such coatings. Aqueous solutions with suitable additives and well-established deposition conditions are used. The German electroplating industry has an annual turnover of ~ 6 billion €, corresponding to 2% of the gross national product. The created values through e.g. prevention of corrosion damage is much larger, ~ 150 billion €/year. Thus electroplating is a highly important technology impacting everybody’s daily life. Unfortunately, most refractory metals cannot be deposited from aqueous electrolytes. Therefore a new technology needs to be devised. Electrodeposition from ionic liquids is such a technology. Ionic liquids are salts with a melting point below 100°C. Many ionic liquids are even liquid at room temperature. These liquids show a wide electrochemical window permitting the deposition of very reactive metals, have a low vapour pressure and often low toxicity [5].

Most papers studying the deposition of Ti, Ta and Nb so far have been using halide based precursors. While for Ta and Nb some success has been reported [6-9], but films are still not free from cracks and impurities, the deposition of Ti succeeded only in ultrathin films so far [10, 11]. The deposition of W and Mo was successful in the case of alloys but the deposition of the pure materials has not been achieved. Currently, in collaboration with the Chemistry department and several German research institutions, we study more in depth the electrochemical deposition of refractory metals (see www.galactif.de). One approach is to use entirely new metal precursor salts, that are not commercially available, and different ionic liquids. These salts and in part the ionic liquids are prepared by project partners in the Chemistry Department. The current master thesis would be separated into three parts: In the first part, a system where we already have expertise shall be studied more in depth. In the second part electrolyte solutions made from components provided by the project partner shall be screened using the electrochemical quartz crystal microbalance technique with respect to their potential for electrodeposition. In the third part, one system is selected and studied more in-depth, to understand the physical details of the electrodeposition mechanism, to characterize the electrodeposited layers structurally and with respect to their corrosion properties.

[1] U. Gramberg, M. Renner, H. Diekmann, Mater. Corros., 46 (1995) 689-700.

[2] M. Schussler, Int. J. Refract. Hard Met., 2 (1983) 67-70.

[3] J.R. Vargas, S. Seelman, in, Zimmer, Inc., USA . 2014, pp. 17pp.

[4] V.-H. Pham, S.-H. Lee, Y. Li, H.-E. Kim, K.-H. Shin, Y.-H. Koh, Thin Solid Films, 536 (2013) 269-274.

[5] S. Zein El Abedin, F. Endres, ChemPhysChem, 7 (2006) 58-61.

[6] T. Carstens, A. Ispas, N. Borisenko, R. Atkin, A. Bund, F. Endres, Electrochimica Acta, 197 (2016) 374-387.

[7] P. Giridhar, S. Zein El Abedin, A. Bund, A. Ispas, F. Endres, Electrochimica Acta, 129 (2014) 312-317.

[8] S. Krischok, A. Ispas, A. Zühlsdorff, A. Ulbrich, A. Bund, F. Endres, ECS Transactions, 50 (2013) 229-237.

[9] N. Borisenko, A. Ispas, E. Zschippang, Q. Liu, S. Zein El Abedin, A. Bund, F. Endres, Electrochimica Acta, 54 (2009) 1519-1528.

[10] F. Endres, S. Zein El Abedin, A.Y. Saad, E.M. Moustafa, N. Borissenko, W.E. Price, G.G. Wallace, D.R. MacFarlane, P.J. Newman, A. Bund, Physical Chemistry Chemical Physics, 10 (2008) 2189-2199.

[11] C.A. Berger, M. Arkhipova, A. Farkas, G. Maas, T. Jacob, Physical Chemistry Chemical Physics, 18 (2016) 4961-4965.

geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Kern-, Teilchen- und Astrophysik
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Aliaksandr Bandarenka
Nach oben