de | en

Prof. Dr. Aliaksandr Bandarenka

Photo von Prof. Dr. Aliaksandr S. Bandarenka
Telefon
+49 89 289-12531
Raum
PH: 3093
E-Mail
bandarenka@ph.tum.de
Links
Homepage
Visitenkarte in TUMonline
Arbeitsgruppe
Physik der Energiewandlung und -speicherung
Funktion
Professur für Physik der Energiewandlung und -speicherung

Lehrveranstaltungen und Termine

Titel und Modulzuordnung
ArtSWSDozent(en)Termine
Energy Materials 1
Zuordnung zu Modulen:
VO 2 Bandarenka, A. Fr, 10:00–12:00, PH HS3
Experimental Physics 3 in English
Zuordnung zu Modulen:
VO 2 Bandarenka, A. Mo, 14:00–16:00, PH HS1
Electrified Solid/Liquid Interfaces: from Theory to Applications
Zuordnung zu Modulen:
HS 1 Bandarenka, A. Mo, 14:00–15:00, PH II 227
Energie-Materialien 1
Zuordnung zu Modulen:
HS 2 Bandarenka, A. Fr, 15:00–16:00, PH II 127
Electrified Interfaces and Catalysis
Zuordnung zu Modulen:
SE 2 Bandarenka, A. Mi, 13:00–15:00, 5101.01.076
Repetitorium zu Elektrisch geladene Fest/Flüssig-Grenzflächen: von der Theorie zu Anwendungen
Zuordnung zu Modulen:
RE 2
Leitung/Koordination: Bandarenka, A.
Repetitorium zu Energie-Materialien 1
Zuordnung zu Modulen:
RE 2
Leitung/Koordination: Bandarenka, A.

Ausgeschriebene Angebote für Abschlussarbeiten

Electrodeposition of refractory metals from ionic liquids

Refractory metals are metals like titanium, tantalum, niobium, tungsten, and molybdenum. They are high-melting reactive metals that in contact with air from a very thin oxide layer that protects them from further oxidation and renders them very stable towards corrosion. This makes them important as coatings for the chemical process industry [1, 2]. Ti and Ta also show excellent biocompatibility and are of interest for implant materials [3, 4]. Therefore, there is a strong interest in generating dense coatings with thicknesses in the µm-mm range of these materials. For other metals, like zinc, nickel, chromium, copper, gold, electroplating is the key technology to make such coatings. Aqueous solutions with suitable additives and well-established deposition conditions are used. The German electroplating industry has an annual turnover of ~ 6 billion €, corresponding to 2% of the gross national product. The created values through e.g. prevention of corrosion damage is much larger, ~ 150 billion €/year. Thus electroplating is a highly important technology impacting everybody’s daily life. Unfortunately, most refractory metals cannot be deposited from aqueous electrolytes. Therefore a new technology needs to be devised. Electrodeposition from ionic liquids is such a technology. Ionic liquids are salts with a melting point below 100°C. Many ionic liquids are even liquid at room temperature. These liquids show a wide electrochemical window permitting the deposition of very reactive metals, have a low vapour pressure and often low toxicity [5].

Most papers studying the deposition of Ti, Ta and Nb so far have been using halide based precursors. While for Ta and Nb some success has been reported [6-9], but films are still not free from cracks and impurities, the deposition of Ti succeeded only in ultrathin films so far [10, 11]. The deposition of W and Mo was successful in the case of alloys but the deposition of the pure materials has not been achieved. Currently, in collaboration with the Chemistry department and several German research institutions, we study more in depth the electrochemical deposition of refractory metals (see www.galactif.de). One approach is to use entirely new metal precursor salts, that are not commercially available, and different ionic liquids. These salts and in part the ionic liquids are prepared by project partners in the Chemistry Department. The current master thesis would be separated into three parts: In the first part, a system where we already have expertise shall be studied more in depth. In the second part electrolyte solutions made from components provided by the project partner shall be screened using the electrochemical quartz crystal microbalance technique with respect to their potential for electrodeposition. In the third part, one system is selected and studied more in-depth, to understand the physical details of the electrodeposition mechanism, to characterize the electrodeposited layers structurally and with respect to their corrosion properties.

[1] U. Gramberg, M. Renner, H. Diekmann, Mater. Corros., 46 (1995) 689-700.

[2] M. Schussler, Int. J. Refract. Hard Met., 2 (1983) 67-70.

[3] J.R. Vargas, S. Seelman, in, Zimmer, Inc., USA . 2014, pp. 17pp.

[4] V.-H. Pham, S.-H. Lee, Y. Li, H.-E. Kim, K.-H. Shin, Y.-H. Koh, Thin Solid Films, 536 (2013) 269-274.

[5] S. Zein El Abedin, F. Endres, ChemPhysChem, 7 (2006) 58-61.

[6] T. Carstens, A. Ispas, N. Borisenko, R. Atkin, A. Bund, F. Endres, Electrochimica Acta, 197 (2016) 374-387.

[7] P. Giridhar, S. Zein El Abedin, A. Bund, A. Ispas, F. Endres, Electrochimica Acta, 129 (2014) 312-317.

[8] S. Krischok, A. Ispas, A. Zühlsdorff, A. Ulbrich, A. Bund, F. Endres, ECS Transactions, 50 (2013) 229-237.

[9] N. Borisenko, A. Ispas, E. Zschippang, Q. Liu, S. Zein El Abedin, A. Bund, F. Endres, Electrochimica Acta, 54 (2009) 1519-1528.

[10] F. Endres, S. Zein El Abedin, A.Y. Saad, E.M. Moustafa, N. Borissenko, W.E. Price, G.G. Wallace, D.R. MacFarlane, P.J. Newman, A. Bund, Physical Chemistry Chemical Physics, 10 (2008) 2189-2199.

[11] C.A. Berger, M. Arkhipova, A. Farkas, G. Maas, T. Jacob, Physical Chemistry Chemical Physics, 18 (2016) 4961-4965.

geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Kern-, Teilchen- und Astrophysik
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Aliaksandr Bandarenka
Nach oben