de | en

Dense and Strange Hadronic Matter

Prof. Laura Fabbietti

Research Field

We are working mainly on strange things, which sounds maybe odd but it refers simply to particles containing a strange quark.

Why is the study of mesons and baryons with a strange content relevant for the human kind? One of the pioneering ideas behind this study was the hypothesis that neutron stars might have a condensate of strange particles in their core. Astronomers look at neutron stars and determine their mass and radii, we collide nuclei in the laboratory and try to produce high density environments, to measure there strange particles and help theoreticians in constraining models for neutron stars... among other things.

Address/Contact

James-Franck-Str. 1
85748 Garching b. München

Members of the Research Group

Professor

Office

Scientists

Students

Other Staff

Teaching

Course with Participations of Group Members

Titel und Modulzuordnung
ArtSWSDozent(en)Termine
Experimentalphysik 4
Zuordnung zu Modulen:
VO 4 Fabbietti, L. Di, 08:00–10:00, MI HS1
Do, 14:15–16:00, MI HS1
Offenes Tutorium zu Experimentalphysik 4
Zuordnung zu Modulen:
UE 2 Höffer von Loewenfeld, P. Rohr, C.
Leitung/Koordination: Fabbietti, L.
Mo, 10:00–12:00, MW 1050
Übung zu Experimentalphysik 4
Zuordnung zu Modulen:
UE 2 Rohr, C.
Leitung/Koordination: Fabbietti, L.
Termine in Gruppen

Offers for Theses in the Group

Antimatter Annihilations in the Laboratory

Our group at the Technische Universität München (TUM) (https://www.denseandstrange.ph.tum.de/) studies the properties of hadronic interactions and their implications for astro-particle physics by means of accelerator experiments. The studies are connected to indirect searches for Dark Matter annihilation or decay products, such as stable Standard Model (anti-)particles in final state: p, anti-p, e+, e-, d, anti-d and others. These searches are currently being performed by several satellite- or balloon-based experiments. In particular, low-energy anti-deuterons are very promising probe for such searches, since cosmic ray-induced background is expected to be low. However, these studies suffer from the lack of our poor current knowledge of inelastic interaction cross-sections of anti-deuterons with matter, which are needed for precise calculation of primary and secondary anti-deuteron fluxes expected near the Earth.

The goal of the here advertised project is to study the inelastic interaction of (anti-)deuterons with matter using the ALICE detector at the CERN LHC. In ultra-relativistic collisions at the LHC, (anti-)deuterons are produced in large amounts, which, together with unique ALICE tracking and PID capabilities, allows one to investigate the inelastic interaction of (anti-)deuterons with the detector material. The idea of the project is to use the ALICE TPC and TOF sub-detectors for (anti-)deuteron identification and the material of the TRD sub-detector located between them as a passive absorption target. As a result, an effective anti-d + A inelastic interaction cross-section can be calculated, where A represents the properties of an averaged TRD material element.

suitable as
  • Bachelor’s Thesis Physics
  • Bachelor’s Thesis for Teachers Physics
  • Master’s Thesis Nuclear, Particle, and Astrophysics
  • Master’s Thesis Applied and Engineering Physics
Supervisor: Laura Fabbietti
Exploring the properties of Quark-Gluon Plasma with anisotropic flow measurements at the Large Hadron Collider

The matter produced in ultra-relativistic heavy-ion collisions resembles theQuark-Gluon Plasma (QGP), which is an extreme state of nuclear matterconsisting of deconfined quarks and gluons.  Such a state existed in the earlyUniverse,  just  a  few  microseconds  after  the  Big  Bang.   Its  properties  canbe experimentally accessed by measuring the azimuthal anisotropies in themomentum  distribution  of  produced  particles  in  heavy-ion  collisions—forinstance, in lead-lead collisions reconstructed with the ALICE detector atCERN’s Large Hadron Collider (LHC).Of  particular  interest  in  this  context  is  anisotropic  flow  phenomenon,which is an observable directly sensitive to the properties of QGP. In thisproject, we introduce the basics of anisotropic flow and corresponding anal-yses techniques, and we guide a student throughout all steps needed for itsfinal measurement, in the large-scale LHC datasets distributed on Grid.We start a project by briefly introducing a theoretical framework withinwhich an anisotropic flow phenomenon can be defined and quantified.  Next,we introduce sophisticated multi-particle correlation techniques, which weredeveloped recently by experimentalists particularly for anisotropic flow mea-surements.  We go in detail through the practical implementation of multi-particle correlations (students are expected at this point to perform somesimple analytic calculations, and to learn and perform programming tasksboth in ROOT and AliROOT. ROOT is the object-oriented analysis frame-work written in C++ programming language, and it is used at the moment asa default software in high-energy physics by all major collaborations world-wide, while AliROOT is the more specific analysis framework developed byALICE Collaboration, and which is based on ROOT.)We wind up the project by letting the student do an independent ani-sotropic flow analysis with his/her own newly developed code in AliROOT,utilizing multi-particle correlation techniques, over real heavy-ion collisionsrecorded at LHC, and stored on Grid.The project is open both to Bachelor and Master students.

suitable as
  • Bachelor’s Thesis Physics
  • Master’s Thesis Nuclear, Particle, and Astrophysics
  • Master’s Thesis Applied and Engineering Physics
Supervisor: Laura Fabbietti
Hyperon-Korrelationen mit LHC Daten: ein Schlüssel zu den Eigenschaften von Neutron-Sternen

Neutronsterne sind die dichteste Objekte in unserem Universum und  keiner weiss noch was drin ist.

Es  könnte  nur Neutronen geben oder andere Hadronen,  wie  Hyperonen  ( Baryonen mit mindest  einem Strange  quark), oder man  könnte  sogar ein  Quark GLuon Plasma  dadrin finden.

Diese sehr untescheidlichen Szenarios kann man nur testen, wenn man die Wechselwirkungen zwischen den verschiedenen Konstituenten bestimmt. Wechselwirkungen zwischen  Hyperonen sind bisher nicht genau bekannt und das Themas diese Arbeit ist die Untersuchung der Korrelationen zwischen Lambda und Xi HYperonen.

Es werden Daten benutzt, die von mit dem ALICE Detektor am LHC aufgenommen worden sind und die Aufgabe besteht eine neue Analyse zu entwickeln, die uns erlauben wird verschiedene theoretische Vorhersage zu testen.

 Die Analyse wird in C++ geschrieben und es werden auch Simulationen durchgeführt werden.

Eine Vorkenntis in C++ is willkommen aber nicht notwendig. Experte im Bereiche der Analyse und Simulationen werden die direkte Betreuung der Arbeit übernehmen.

Die Kandidatin/ der kandidat werden die Möglichkeit haben, in Kontakt mit der internationalen ALICE COllaboration am CERN zu kommen.

suitable as
  • Bachelor’s Thesis Physics
  • Bachelor’s Thesis for Teachers Physics
  • Master’s Thesis Nuclear, Particle, and Astrophysics
  • Master’s Thesis Applied and Engineering Physics
Supervisor: Laura Fabbietti
Hyperon-Korrelationen mit LHC Daten: ein Schlüssel zu den Eigenschaften von Neutron-Sternen

Neutronsterne sind die dichteste Objekte in unserem Universum und  keiner weiss noch was drin ist.

Es  könnte  nur Neutronen geben oder andere Hadronen,  wie  Hyperonen  ( Baryonen mit mindest  einem Strange  quark), oder man  könnte  sogar ein  Quark GLuon Plasma  dadrin finden.

Diese sehr untescheidlichen Szenarios kann man nur testen, wenn man die Wechselwirkungen zwischen den verschiedenen Konstituenten bestimmt. Wechselwirkungen zwischen  Hyperonen sind bisher nicht genau bekannt und das Themas diese Arbeit ist die Untersuchung der Korrelationen zwischen Lambda und Xi HYperonen.

Es werden Daten benutzt, die von mit dem ALICE Detektor am LHC aufgenommen worden sind und die Aufgabe besteht eine neue Analyse zu entwickeln, die uns erlauben wird verschiedene theoretische Vorhersage zu testen.

 Die Analyse wird in C++ geschrieben und es werden auch Simulationen durchgeführt werden.

Eine Vorkenntis in C++ is willkommen aber nicht notwendig. Experte im Bereiche der Analyse und Simulationen werden die direkte Betreuung der Arbeit übernehmen.

Die Kandidatin/ der kandidat werden die Möglichkeit haben, in Kontakt mit der internationalen ALICE COllaboration am CERN zu kommen.

suitable as
  • Bachelor’s Thesis Physics
  • Bachelor’s Thesis for Teachers Physics
  • Master’s Thesis Nuclear, Particle, and Astrophysics
  • Master’s Thesis Applied and Engineering Physics
Supervisor: Laura Fabbietti

Current and Finished Theses in the Group

Influence of the Charge Density on Discharges in THGEM-based Detectors
Abschlussarbeit im Masterstudiengang Physik (Kern-, Teilchen- und Astrophysik)
Themensteller(in): Laura Fabbietti
Constraints on the anti-deuteron inelastic interaction cross-sections using pp and p-Pb collisions in ALICE at LHC
Abschlussarbeit im Masterstudiengang Physik (Kern-, Teilchen- und Astrophysik)
Themensteller(in): Laura Fabbietti
Simulation of Cosmic-Ray Antimatter Fluxes
Abschlussarbeit im Masterstudiengang Physics (Applied and Engineering Physics)
Themensteller(in): Laura Fabbietti
Top of page