Dr. Ph.D. Ante Bilandzic

+49 89 289-12563
Visitenkarte in TUMonline
Dichte und seltsame hadronische Materie

Ausgeschriebene Angebote für Abschlussarbeiten

Analyse von Anisotropischen Flow mit Symmetrischen Cumulants in ALICE am Large Hadron Collider

The produced matter in heavy-ion collisions resembles the so-called quark-

gluon plasma (QGP), which is a state of matter consisting of deconned

quarks and gluons. It is believed that such a state of matter existed in the

early Universe, just a few microseconds after the Big Bang. Its properties

can be experimentally studied by measuring the azimuthal anisotropy in the

momentum distribution of the produced particles in heavy-ion collisions, for

example in Pb+Pb collisions measured with the ALICE detector at CERN

Large Hadron Collider (LHC). Of particular interest is anisotropic ow phe-

nomenon, which is an observable directly sensitive to the properties of QGP.

In this project we introduce the basics of anisotropic ow, and we guide a

student throughout all steps needed for its nal measurement.

We start a project by briey introducing a theoretical framework within

which anisotropic ow phenomenon can be dened and quantied. Next,

we discuss to what extent such a framework is directly applicable in an

actual experiment. As a useful alternative tool developed by experimental-

ists for anisotropic ow measurement we discuss multi-particle correlation

techniques. We go in detail through the practical implementation of multi-

particle correlations (students are expected at this point to perform some sim-

ple analytic calculations, and to learn and perform some simple programming

in ROOT, which is nowadays the default object-oriented analysis framework

used in high energy physics by all major collaborations). We wind up the

project by letting student do an independent anisotropic ow analysis utiliz-

ing multi-particle correlations techniques over small data sample consisting

of real heavy-ion collisions recorded at LHC.

geeignet als
  • Bachelorarbeit Physik
  • Masterarbeit Kern-, Teilchen- und Astrophysik
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Laura Fabbietti

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.


Biologische Systeme, vom Protein bis hin zu lebenden Zellen und deren Verbänden, gehorchen physikalischen Prinzipien. Unser Forschungsbereich Biophysik ist deutschlandweit einer der größten Zusammenschlüsse in diesem Bereich.