de | en

Max-Planck-Institue for Extraterrestrial Physics (MPE)

Research Field

A description of the fascinating research topics follows soon.

Address/Contact

Giessenbachstrasse 1
85748 Garching b. München

Members of the Research Group

Other Staff

Teaching

Course with Participations of Group Members

Titel und Modulzuordnung
ArtSWSDozent(en)Termine
Computational Physics 1
eLearning-Kurs LV-Unterlagen
Zuordnung zu Modulen:
VO 2 Recksiegel, S. Di, 14:00–16:00, PH HS3
Do, 16:00–17:30, PH 1161
Einführung in neuronale Netzwerke für Studierende der Physik
eLearning-Kurs
Zuordnung zu Modulen:
VO 2 Recksiegel, S. Mi, 16:00–18:00, PH HS3
Vorkurs für Studienanfänger Physik
eLearning-Kurs LV-Unterlagen
Zuordnung zu Modulen:
VO 1.5 Recksiegel, S. Do, 14:00–15:00
Exercise to Computational Physics 1
LV-Unterlagen virtueller Hörsaal
Zuordnung zu Modulen:
UE 2 Recksiegel, S. Termine in Gruppen
Übungen zum Vorkurs Mathematik/Physik
Zuordnung zu Modulen:
UE 2 Himstedt, F. Hofmaier, F. Lenz, B. Recksiegel, S.
Übung zu Einführung in neuronale Netzwerke für Studierende der Physik
Zuordnung zu Modulen:
UE 2
Leitung/Koordination: Recksiegel, S.
Termine in Gruppen
Übung zum Vorkurs für Studienanfänger Physik
LV-Unterlagen
Zuordnung zu Modulen:
UE 1.5 Recksiegel, S.
Vorkurs Mathematik/Physik
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
UE 2 Himstedt, F. Hofmaier, F. Lenz, B. Recksiegel, S.
Physikalische Information und Dokumentation
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
KO 4 Diener, J. Homolka, J.
Physiksoftware und Datenbanken
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
KO 4 Diener, J. Homolka, J.
Seminar über Theoretische Elementarteilchenphysik
aktuelle Informationen
Zuordnung zu Modulen:
SE 2 Beneke, M. Garbrecht, B. Ibarra, A. Recksiegel, S. Tancredi, L. … (insgesamt 6) Do, 14:00–16:00, PH HS3

Offers for Theses in the Group

Fragmentation in massive molecular cloud clumps
What determines a star's final mass is a fundamental, still unsolved question in star formation research. Thermal pressure in a cloud fragment counteracts gravity, hence the temperature of the dense, star forming gas could be expected to influence the mass needed to make the cloud fragment (core) unstable to collapse and form a star. The aim of this project will be to investigate the small scale structure within a number of dense clumps with previously measured gas temperatures. We will use archival sub-millimetre wavelength radio continuum data (tracing emission from cold dust mixed with the gas) obtained with the ALMA interferometric radio telescope. Applying different algorithms to characterize the clumps substructure it will be investigated whether there are systematic differences in the small scale structure as the clumps temperature varies, such as differences in the core mass distribution and/or separation, that could hint at a dependence of the cores masses (and resulting stellar mass) on the dense gas temperature. The project includes elements from computational and observational sub-mm radio astrophysics and will provide basic knowledge in the field of star formation. Some background in astrophysics is advantageous, but affinity and basic knowledge in Python programming is a must. Contact: Jochen Greiner, jcg@mpe.mpg.de, MPE Room 1.3.13, Tel. 30000-3847
suitable as
  • Bachelor’s Thesis Physics
Supervisor: Jochen Greiner
Localization of gamma-ray transients

The 2017 detection of gravitational waves (GW) with the advanced LIGO/Virgo instruments in conjunction with a short gamma-ray burst (GRB) has surprised gamma-ray astronomers because of the substantially different properties of the GRB signal as compared to canonical GRBs. Similarly, the production of gamma-ray flares coincident with fast radio bursts is a mystery. This motivates an "open-mind" search for untriggered transient events in the data stream of the gamma-ray burst monitor (GBM) on the Fermi satellite. With a previous Master thesis we have developed an automated search for gamma-ray transients in Fermi/GBM data.

This thesis shall be devoted to improve this pipeline, and establish a Python program for checking for potential counterparts of these newly identified transients in existing data of the Swift/BAT survey, with the goal of an identification and good localization.

The project includes elements from computational and observational high-energy astrophysics, and will allow for obtaining extensive knowledge on the broad class of high-energy transients. Some background in astrophysics is advantageous, but affinity with Python programming is a must.                                              
                                                                                   
Contact: Jochen Greiner, jcg@mpe.mpg.de, MPE Room 1.3.13, Tel. 30000-3847

suitable as
  • Bachelor’s Thesis Physics
Supervisor: Jochen Greiner
Testing the Fireball Modell of Gamma-Ray Burst Afterglows
Gamma-ray bursts (GRBs) are flashes of gamma-ray resulting from the death of massive stars or the merger of neutron stars. They are followed by an `afterglow' signal that can be detected from radio to X-rays, produced by a shock wave moving into the gas surrounding the burster at approximately the speed of light. This afterglow light is well modelled with synchrotron emission, with the cooling frequency typically being close to the optical wavebands. This thesis shall use a dataset of optical and X-ray data of 60 GRB afterglows and determine the location of the cooling break, and test the closure relations which exist between the spectral slope and the temporal decay slope. Technically, this involves (i) understanding optical and X-ray data, (ii) learn combined fitting of different instrument's data, (iii) understand synchrotron emission and the afterglow fireball modell, (iv) estimate uncertainties of the fit parameters, and (v) derive conclusions about the validity and limits of the model. The project includes elements from computational and observational high-energy astrophysics, and will allow for obtaining extensive knowledge on gamma-ray bursts and related phenomena. Some background in astrophysics is advantageous, but affinity with Python programming is a must. Contact: Jochen Greiner, jcg@mpe.mpg.de, MPE Room 1.3.13, Tel. 30000-3847
suitable as
  • Bachelor’s Thesis Physics
Supervisor: Jochen Greiner

Current and Finished Theses in the Group

Data analysis method for high contrast imaging on astrophysical data from the SPHERE instrument operating in imaging and in polarimetry
Abschlussarbeit im Masterstudiengang Physik (Kern-, Teilchen- und Astrophysik)
Themensteller(in): Frank Eisenhauer
Top of page