Prof. Dr. Christian Pfleiderer

Photo von Prof. Dr. Christian Pfleiderer.
Telefon
+49 89 289-14720
Raum
Physik I: 2207
E-Mail
christian.pfleiderer@tum.de
Links
Visitenkarte in TUMonline
Arbeitsgruppe
Topologie korrelierter Systeme
Funktion
Professur für Topologie korrelierter Systeme
Sprechstunde
nach Vereinbarung

Lehrveranstaltungen und Termine

Titel und Modulzuordnung
ArtSWSDozent(en)Termine
Experimentalphysik 2
Zuordnung zu Modulen:
VU 6 Pfleiderer, C.
Mitwirkende: Rohr, C.
Montag, 08:30–10:00
Mittwoch, 14:00–16:00
sowie Termine in Gruppen
Computer Simulations with Tutorials on Magnetic Quantum Oscillations
Zuordnung zu Modulen:
HS 2 Wilde, M.
Leitung/Koordination: Pfleiderer, C.
Mittwoch, 16:30–18:00
Seminar über experimentelle Methoden der Festkörperphysik
Zuordnung zu Modulen:
PS 2 Böni, P. Hugenschmidt, C. Pfleiderer, C. Donnerstag, 10:45–12:15
Offenes Tutorium zu Experimentalphysik 2
Zuordnung zu Modulen:
UE 2 Höffer von Loewenfeld, P. Rohr, C.
Leitung/Koordination: Pfleiderer, C.
Dienstag, 10:00–12:00
sowie einzelne oder verschobene Termine
Zusatzübung zu Experimentalphysik 2 für Lehramtstudierende
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
UE 2 Kunz, T.
Leitung/Koordination: Pfleiderer, C.
Montag, 10:00–11:30
Mentorenprogramm im Bachelorstudiengang Physik (Professor[inn]en L-Z)
Zuordnung zu Modulen:
TT 0.2 Märkisch, B. Müller-Buschbaum, P. Oberauer, L. Papadakis, C. Paul, S. … (insgesamt 18)
Leitung/Koordination: Höffer von Loewenfeld, P.
Demonstrationsversuche für die Experimentalphysik
Zuordnung zu Modulen:
PR 1 Pfleiderer, C.
Mitwirkende: Kressierer, J.
Doktorandenkolloquium zur Topologie korrelierter Systeme
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
KO 2 Pfleiderer, C.
Kolloquium zu Halbleiterprozesstechnik und Mikromechanik
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
KO 3 Wilde, M.
Leitung/Koordination: Pfleiderer, C.
Freitag, 09:30–11:45
Seminar zu Experimenten in Hohen Magnetfeldern
Zuordnung zu Modulen:
SE 2 Wilde, M.
Leitung/Koordination: Pfleiderer, C.
Donnerstag, 13:30–15:00
Tutorenseminar zu Experimentalphysik 2
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
SE 2 Pfleiderer, C.

Ausgeschriebene Angebote für Abschlussarbeiten

Extreme Quanten-Materie im Festkörper

The collective excitations of solids at very low excitation energies may be described as particle-like states. Important examples are phonons, magnons or plasmons. However, increasing evidence suggests a dominant role of subtle stochastic processes and that proper account of the full spectrum of fluctuations yields the key for many of the most puzzling materials properties reported in the recent literature. Ultra-high resolution neutron spectroscopy provides deep insights on the nature and the consequences of these subtle fluctuations, in particular the emergence of entangled quantum matter.

The proposed project pursues measurements of stochastic processes of extreme quantum matter in solids with ultra-high energy resolution by means of neutron resonance spin-echo spectroscopy. In recent years we have implemented a new and extremely powerful variant of this technique at FRM II. The experiments range from technical developments of the neutron beam-line RESEDA at FRM II, the experimental studies, analysis of the data and complementary measurements using other neutron scattering techniques as well as laboratory based methods, where suitable.

 
geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Christian Pfleiderer
Kalorimetrie von Quanten-Phasen-Übergängen im Transversalen Magnetfeld

In materials with strong magnetic anisotropies, long-range magnetic order can be destroyed with a magnetic field applied along the hard magnetisation axis. At ultra-low temperatures in the milli-Kelvin range this suppression entails the perhaps theoretically best understood examples of a quantum phase transition, i.e., a phase transition driven by a change of quantum entanglement. 

Even though the specific heat represents the most important thermodynamic probe of the nature of the excitations of a given material, measurements across transverse field tuned quantum phase transitions, despite many decades of research, have not been reported in the literature, because the presence of strong magnetic torques limit the thermal decoupling from the bath.

The objective of the thesis project are measurements of the specific heat in materials with strong electronic correlations and large magnetic anisotropies under magnetic fields applied along the hard magnetisation axis. An experimental device capable of performing the necessary measurements was recently developed and commissioned by our group. It is world-wide unique, permitting for the first time the required measurements. The experiments comprise of highly sophisticated experimental techniques and the theoretical interpretation based on quantum field theoretical concepts.

 
geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Christian Pfleiderer
Neutronenstreuung an nicht-zentrosymmetrischen Cer-Verbindungen
geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Christian Pfleiderer
Quanten-Materialien für Energie-relevante Technologien

In the history of mankind the discovery of materials with hitherto unknown properties has been been recognized by the names attributed to entire epochs. In turn, the preparation of large, high-quality single crystals of novel materials represents a prerequisite for technological progress on some of the most pressing grand challenges. In particular, materials with macroscopic properties arising from the quantum entanglement of the underlying spin and charge degrees of freedom bear great potential in the context of energy-relevant technologies.

The proposed project concerns single crystal growth of selected quantum materials of interest for energy-relevant technologies, and the associated detailed characterisation of the structural and physical properties. For the growth of high purity samples we have developed a world-wide unique preparation chain satisfying ultra-pure conditions. It combines pre-growth casting and post-growth purification furnaces with state-of-the-art optical float-zoning. The experiments lay the foundations for a broad range of studies in collaboration with national and international partners.

 
geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Christian Pfleiderer
Spektroskopie von elektronischen Instabilitäten durch Quanten-Oszillationen

In a metal the application of large magnetic fields at very low temperatures causes Landau quantisation of the density of states. The associated quantum oscillations in the magnetic field dependence of the free energy, resulting, for instance, in the de Haas-van Alphen or Shubnikov-de Haas effects, provide detailed microscopic information on the electronic structure and low lying electronic excitations of the metallic state. This allows to develop a predictive understanding in the search for novel electronic phases, as well as a search for the break-down of our understanding of the metallic state. 

The proposed project consists in quantum-oscillation spectroscopy of materials near electronic instabilities to unravel the effects of strongly coupled spin, charge and lattice degrees of freedom on the electronic structure of carefully selected materials. Our group operates several state-of-the-art high-field/ultra-low temperature systems for quantum-oscillation spectroscopy of the metallic state. The experiments comprise of highly advanced experimental methods and electronic structure calculations. 

 
geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Christian Pfleiderer

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.

Biophysik

Biologische Systeme, vom Protein bis hin zu lebenden Zellen und deren Verbänden, gehorchen physikalischen Prinzipien. Unser Forschungsbereich Biophysik ist deutschlandweit einer der größten Zusammenschlüsse in diesem Bereich.