de | en

Prof. Dr. rer. nat. Christian Back

Photo von Prof. Dr. rer. nat. Christian Back.
Phone
+49 89 289-12401
Room
2023
E-Mail
christian.back@tum.de
Links
Homepage
Page in TUMonline
Group
Experimental Physics of Functional Spin Systems
Job Titles
  • Department Council Member: Representative of the professors
  • Professorship on Experimental Physics of Functional Spin Systems
  • Spokesperson of the Research Area Condensed Matter Physics
Additional Info
efs.office@ph.tum.de

Courses and Dates

Title and Module Assignment
ArtSWSLecturer(s)Dates
Physics for Electrical Engineering
eLearning course
Assigned to modules:
VO 4 Back, C. Mon, 09:45–11:15, 1200
Thu, 09:45–11:15, 1200
Smart Materials
eLearning course
Assigned to modules:
VO 2 Back, C.
Assisstants: Aqeel, A.
Mon, 11:00–13:00, MW 0250
Spin Orbit Fields and Their Applications
eLearning course
Assigned to modules:
PS 2 Back, C.
Assisstants: Chen, L.
Thu, 12:30–14:00, PH 2024
Exercise to Smart Materials
Assigned to modules:
UE 1 Aqeel, A.
Responsible/Coordination: Back, C.
dates in groups
Tutorials to Physics for Electrical Engineering
eLearning course
Assigned to modules:
UE 2 Riedel, C.
Responsible/Coordination: Back, C.
dates in groups
Large Tutorial and Mathematical Supplement to Physics for Electrical Engineering
eLearning course
Assigned to modules:
UE 2
Responsible/Coordination: Back, C.
Wed, 08:00–09:30, 1200
Current Topics in Functional Spin Systems
Assigned to modules:
SE 2 Back, C. Tue, 14:00–16:00, PH 2024
FOPRA Experiment 23: Ferromagnetic Resonance (FMR)
Assigned to modules:
PR 1 Korniienko, A. Pietanesi, L.
Responsible/Coordination: Back, C.
Mentoring in the Bachelor’s Program Physics
Assigned to modules:
KO 0.2 Back, C. dates in groups
Revision Course to Spin Orbit Fields and Their Applications
Assigned to modules:
RE 2
Responsible/Coordination: Back, C.
Current Topics on Surface Magnetism
Assigned to modules:
SE 2 Back, C. Wed, 16:00–17:30, PH 2024
Special Topics in Magneto-Transport
Assigned to modules:
SE 2 Back, C.
Assisstants: Chen, L.
Thu, 16:00–17:30, PH 2024

Offered Bachelor’s or Master’s Theses Topics

Aufbau eines Spektrometers für ferromagnetische Resonanz für Frequenzen bis 65 GHz

In dieser Arbeit soll ein neues Spektrometer für Messungen mit Methoden der ferromagnetischen Resonanz im Frequenzbereich zwischen 10 - 65 GHz aufgebaut und getestet werden.

suitable as
  • Bachelor’s Thesis Physics
Supervisor: Christian Back
Elektrischer Nachweis einer Domänenwand in FeCo-Schichten

In diesem Projekt soll der anisotrope Magneto-Widerstand verwendet werden um eine einzelne Domänenwand in ferromagnetischen Nanostrukturen aus FeCo zu detektieren.

suitable as
  • Bachelor’s Thesis Physics
Supervisor: Christian Back
Hochauflösende magnetische Mikroskopie unter Verwendung des spitzenverstärkten Anomalen-Nernst-Effekts
We want to use a tip-enhanced near-field microscope to enable high-resolution magnetic microscopy. In this experiment, the tip of a force microscope is illuminated with a laser and thus a large temperature gradient is generated locally (via the field increase at the tip). The temperature gradient generates an anomalous Nernst voltage locally, which can be detected via electrical contacts on the ferromagnetic nanostructure. With this method, it should be possible to realise magnetic microscopy with a spatial resolution of 20 nm.
suitable as
  • Master’s Thesis Condensed Matter Physics
Supervisor: Christian Back
Messung der ferromagnetischen Resonanz in senkrechter Geometrie an Ferromagnet/Topologischer Isolator Bi-Lagen
In diesem Projekt sollen temperaturabhängige Messungen der ferromagnetischen Resonanz an Ferromagnet/Topologischen Isolator Heterostrukturen durchgeführt werden. Als Funktion der Temperatur sollte es möglich sein den Anstieg der Linienbreite zu beobachten, der durch die Dominanz der topologischen Oberflächenzustände bei tiefen Temperaturen hervorgerufen wird.
suitable as
  • Bachelor’s Thesis Physics
Supervisor: Christian Back
Nachweis von Spin-Orbit-Torques mit Hilfe eines stehenden Spinwellenmusters
Current-induced spin-orbit torques (SOTs) in ferromagnet/nonmagnetic metal heterostructures open vast possibilities to design spintronic devices to store, process, and transmit information in a simple architecture. It is a central task to search for efficient SOT devices, and to quantify the magnitude as well as the symmetry of current-induced spin-orbit magnetic fields (SOFs). Here, we will evaluate an approach to determine the SOFs based on magnetization dynamics by means of time-resolved magneto-optic Kerr microscopy. A microwave current in a narrow Fe/GaAs (001) stripe generates an Oersted field as well as SOFs due to the reduced symmetry at the Fe/GaAs interface, and excites standing spin wave (SSW) modes because of the lateral confinement. Due to their different symmetries, the SOFs and the Oersted field generate distinctly different mode patterns. Thus, it is possible to determine the magnitude of the SOFs from an analysis of the shape of the SSW patterns. Specifically, this method, which is conceptually different from previous approaches based on line shape analysis, is phase independent and self-calibrated. It can be used to measure the current-induced SOFs in other material systems, e.g., ferromagnetic metal/nonmagnetic metal heterostructures.
suitable as
  • Master’s Thesis Condensed Matter Physics
Supervisor: Christian Back
Quantentransport in ferromagnetischen, austauschgekoppelten supraleitenden Nanodrähten
Wir werden Thullium Yttrium Garnet (TIG)/Supraleiter-Heterostrukturen untersuchen, um den Einfluss des Supraleiters auf die Magnetisierungsdynamik über ferromagnetische Resonanz zu erforschen. Da TIG eine senkrechte magnetische Anisotropie aufweist, wäre es interessant, den Transport im Supraleiter durch Messungen wie die I-U-Charakterisierung eines auf TIG hergestellten SQUID zu untersuchen und die Flussquantisierung im SQUID als Funktion der Magnetisierung des TIG zu quantifizieren.
suitable as
  • Bachelor’s Thesis Physics
Supervisor: Christian Back
Spinwellenausbreitung in Bi-YIG
Spinwellenspektroskopie (elektrisch und optisch) und SQUID-Messungen sollen an ferrimagnetischen Bi-YIG Filmen durchgeführt werden, um die Eigenschaften der Filme in Bezug auf die Spindynamik zu charakterisieren. Wenn es die Zeit erlaubt, werden wir die Leistungsabhängigkeit spezifischer Spinwellen-Anregungen (MSBVW) untersuchen und die Beziehung zwischen kohärenten Spinwellen und Bose-Einstein-Magnonen (oder Magnonen bei der niedrigsten Energie) untersuchen.
suitable as
  • Bachelor’s Thesis Physics
Supervisor: Christian Back
Wechselwirkung zwischen Spin-Orbit-Torque und supraleitenden Zuständen in Ni/Bi Heterostrukturen
Durch Magneto-Transport Messungen bei tiefen Temperaturen können sogenannte Spin-Orbit-Torques detektiert werden, die ausgenutzt werden können um die Magnetisierung von dünnen Filmen zu manipulieren. In diesem Projekt sollen Kombinationen aus ferromagnetischen Schichten und Supraleitern untersucht werden.
suitable as
  • Bachelor’s Thesis Physics
Supervisor: Christian Back
Zeitaufgelöste Messung des Umschaltprozesses für in der Ebene magnetisierte mikrostrukturierte Elemente
The demonstration of magnetization switching induced by spin-orbit torques in a ferromagnetic metal (FM)/heavy metal (HM) bilayer has attracted tremendous attention due to possible application in magnetic random access memories (MRAM). Typically, an in-plane current sent through the heavy metal layer (e.g. Pt) gives rise to a spin accumulation at the FM/HM interface due to the spin Hall effect. The spin accumulation acts on the ferromagnet (e.g. Co) via the spin transfer torque effect and leads to magnetization dynamics and, ideally, to switching. In this Master thesis, we will use time resolved magneto-optical Kerr microscopy (TRMOKE), which is a time and spatially resolved technique, to trace the switching dynamics of an in-plane magnetized ferromagnetic metal. The following points will be addressed: 1) The Co/Pt thin films will be patterned to micrometer-size devices by using a by mask-free laser writer or by electron-beam lithography. 2) Time and spatially resolved magnetization dynamics will be measured by TRMOKE. 3) Finally, the experimental data will be compared to theory.
suitable as
  • Master’s Thesis Condensed Matter Physics
Supervisor: Christian Back
Top of page