Experimental Physics of Functional Spin Systems
Prof. Christian Back
Research Field
The research of our group is focused on the detailed understanding of magnetization dynamics in hybrid materials comprising of ultrathin magnetic layers in combination with topological materials or with materials inducing strong interfacial spin-orbit interaction. We tailor novel hybrid magnetic structures and investigate their static and dynamic magnetic properties. Among the subjects covered in our research are the dynamics in confined magnetic systems, magnonics, spin orbitronics, hybrid topological materials, high resolution magnetic microscopy as well as magnetic phase transitions in low dimensional systems.
In our group we use several techniques to examine magnetization dynamics, the propagation of spinwaves and the efficiency of charge to spin current conversion. At the heart of our research projects are various time and spatially resolved high resolution magnetic microscopy techniques in combination with microwave excitation and detection.
Address/Contact
James-Franck-Str. 1
85748 Garching b. München
efs.office@ph.tum.de
+49 89 289 12401
Fax: +49 89 289 12414
Members of the Research Group
Professor
Photo | Degree | Firstname | Lastname | Room | Phone | |
---|---|---|---|---|---|---|
![]() |
Prof. Dr. | Christian | Back | 2023 | +49 89 289-12401 |
Office
Photo | Degree | Firstname | Lastname | Room | Phone | |
---|---|---|---|---|---|---|
![]() |
Gertrud | Weiß | 2025 | +49 89 289-12402 |
Scientists
Photo | Degree | Firstname | Lastname | Room | Phone | |
---|---|---|---|---|---|---|
![]() |
Dr. | Aisha | Aqeel | 2029 | +49 89 289-12660 | |
![]() |
Dr. | Lin | Chen | 2035 | +49 89 289-12406 | |
![]() |
Dr. | Korbinian | Geirhos | 2041 | +49 89 289-12674 | |
![]() |
Anastasiia | Korniienko | 2044 | +49 89 289-12400 | ||
![]() |
M.Sc. | Carolina | Lüthi | 2044 | +49 89 289-12400 | |
![]() |
M.Sc. | Maximilian | Mangold | 2031 | +49 89 289-12425 | |
![]() |
Sina | Mehboodi | 2033 | +49 89 289-12405 | ||
![]() |
Laura | Pietanesi | 2041 | +49 89 289-12409 | ||
![]() |
M.Sc. | Christian | Riedel | 2044 | +49 89 289-12400 | |
![]() |
M.Sc. | Jan | Sahliger | 2043 | +49 89 289-12409 | |
![]() |
Ph.D. | Dhavala | Suri | 2029 | +49 89 289-12660 | |
![]() |
Dr. | Takuya | Taniguchi | 2033 | +49 89 289-12405 | |
![]() |
M.Sc. | Franz | Vilsmeier | 2027 | +49 89 289-12403 |
Students
Photo | Degree | Firstname | Lastname | Room | Phone | |
---|---|---|---|---|---|---|
![]() |
Marko | Aligrudic | – | – | ||
![]() |
M.Sc. | Jianping | Guo | 2037 | +49 89 289-12407 | |
![]() |
Johannes | Hielscher | – | – | ||
![]() |
Niklas | Meier | – | – | ||
![]() |
B.Sc. | Thomas | Narr | 2031 | +49 89 289-12425 | |
![]() |
M.Eng. | Jian | Shao | 2035 | +49 89 289-12406 | |
![]() |
B.Sc. | Yuhan | Sun | 2037 | +49 89 289-12407 | |
![]() |
B.Sc. | Esteban Alberto | Vindas Prado | – | – |
Other Staff
Photo | Degree | Firstname | Lastname | Room | Phone | |
---|---|---|---|---|---|---|
![]() |
Dr. | Rebeca | Diaz Pardo | – | +49 89 289-12419 | |
![]() |
Stephan | Lichtenauer | – | +49 89 289-12404 | ||
![]() |
Dr. | Thomas | Meier | – | +49 89 289-12403 | |
![]() |
Thomas | Rapp | – | +49 89 289-12404 | ||
![]() |
Dr. | Alexis | Wartelle | 2035 | – |
Teaching
Course with Participations of Group Members
Offers for Theses in the Group
- Ferromagnetic resonance measurements up to 65 GHz
- In this project we would like to extend the frequency range for ferromagnetic resonance experiments in an existing set-up to 65 GHz. Test measurements will be performed on selected thin film ferromagnets.
- suitable as
- Bachelor’s Thesis Physics
- Supervisor: Christian Back
- Electric-field control of exchange interaction
Es ist bekannt, dass die Austauschwechselwirkung erstmals von Heisenberg vor etwa 100 Jahren vorgeschlagen wurde. Ist ein Material erst einmal präpariert, so wird im Allgemeinen davon ausgegangen, dass es nicht möglich ist, die Größe der Austauschwechselwirkung zu ändern. Dieses Projekt zielt darauf ab, ein externes elektrisches Feld zur Kontrolle der Austauschwechselwirkung in ferromagnetischen Metallen zu nutzen. Zur Untersuchung der Steuerung durch ein elektrisches Feld verwenden wir ultradünnes Fe, das durch Molekularstrahlepitaxie auf einem Pt(111)-Substrat aufgewachsen ist. Ein Feldeffekttransistor wird mit Hilfe von Elektronenstrahllithographie hergestellt, und Magneto-Transport, magnetisch-optische und ferromagnetische Resonanztechniken werden zur Charakterisierung verwendet.
--------------------------------------------------------------------------------------------------------------------------------------It is known that the exchange interaction was first proposed by Heisenberg about 100 years ago. Once a material is prepared, it is generally assumed that it is not possible to change the magnitude of the exchange interaction. This project aims to use an external electric-field to control the exchange interaction in ferromagnetic metals. Here, to study the electric-field control, we use ultrathin Fe grown on Pt(111) substrate by molecular-beam epitaxy. A field-effect transistor device will be fabricated by electron-beam lithography, and magneto-transport, magnetic-optical and ferromagnetic resonance techniques will be used in this study.
- suitable as
- Bachelor’s Thesis Physics
- Supervisor: Christian Back
- Electric-field control of spin-orbit torques in ultrathin Fe/Pt bi-layers
- Spin-Orbit-Torques (SOTs) which can be used to manipulate the magnetization of thin ferromagnetic layers can be generated at interfaces to heavy metals such as Platinum. In this thesis we will attempt to modify the strength and direction of SOTs in thin bi-layers of Pt and Fe.
- suitable as
- Bachelor’s Thesis Physics
- Supervisor: Christian Back
- Probing "flat band magnetism" in the magnetic Weyl semimetal CoSnS
- A recent scanning tunneling microscopy experiment (Nature Physics 15, 443 (2019))shows the existence of an orbital magnetic moment in the magnetic Weyl semimetal CoSnS. Such orbital magnetism originates from the kinetically frustrated Kagome flat band in this (and other) material and is purely a quantum mechanical effect. We expect that this orbital magnetic moment can be detected by the electron spin resonance technique, and the experimental results will be compared with theoretical calculations.
- suitable as
- Bachelor’s Thesis Physics
- Supervisor: Christian Back
Current and Finished Theses in the Group
- Time and Spacial Resolved Measurement of Current Induced Magnetic Switching in Gallium Manganese Arsenide
- Abschlussarbeit im Masterstudiengang Physik (Physik der kondensierten Materie)
- Themensteller(in): Christian Back
- Spin Currents in Topological Materials
- Abschlussarbeit im Masterstudiengang Physics (Applied and Engineering Physics)
- Themensteller(in): Christian Back