Theoretische Teilchen- und Kernphysik

Prof. Nora Brambilla


Our research is focused on Effective Field Theories (EFTs) and Renormalization Techniques with applications in Particle Physics and Hadronic/Nuclear Physics. Effective quantum field theories are the state-of-the-art tools for analyzing physical systems that contain many different energy or momentum scales. Such systems are the rule, rather than the exception, from the high-energy domain of Particle Physics to the low-energy domain of Nuclear Physics.

Specifically we construct and apply new effective field theories to deal with processes of strong interactions and QCD, Standard Model and beyond the Standard Model physics. At T30f we study non-relativistic effective field theories with applications to heavy-quark processes and quarkonium physics at accelerator experiments (BELLE, BESIII, LHC and PANDA experiments); EFTs for strong interactions at finite temperature and density with applications to processes taking place at heavy-ion experiments at RHIC and LHC, as well as in cosmological environments. Furthermore we work on high-order perturbative calculations in QCD with applications to precision determination of certain Standard Model parameters (quark masses, strong coupling constant) as well as non-perturbative and computational methods in field theory with application to non-perturbative QCD and the confinement mechanism.


James-Franck-Str. 1/I
85748 Garching b. München

Mitarbeiterinnen und Mitarbeiter der Arbeitsgruppe

Professorinnen und Professoren

Mitarbeiterinnen und Mitarbeiter

Lehrangebot der Arbeitsgruppe

Lehrveranstaltungen mit Beteiligung der Arbeitsgruppe

Ausgeschriebene Angebote für Abschlussarbeiten an der Arbeitsgruppe

Wilson loop and confinement

Quark and gluons interact strongly. At low energy in particular their interaction coupling constant becomes large, giving origin to the property of confinement: quarks are therefore confined into hadrons. The field theory describing the strong interactions, QCD (Quantum Chromodynamics), displays such property. However, the study of confinement should be performed with non-perturbative methods. Lattice QCD is such a method, in which the Lagrangian of QCD is discretized on a space-time lattice and field theoretical calculations are reduced to the numerical computation of multidimensional integrals. An object of particular interest in relation to confinement studies is a correlator called Wilson loop.
Scope of this thesis is to test and optimize a code for the calculation of the Wilson loop in QCD and to understand how confinement arises from the behavior of the Wilson loop.

Advisors: Prof. N. Brambilla, Pd. A. Vairo, Dr. J. Weber

geeignet als
  • Bachelorarbeit Physik
Themensteller(in): Nora Brambilla
X, Y, Z states

X, Y, Z states are exotics states observed in the heavy quarkonium sector at several high energy accelerator experiments (Belle in Japan, BES in China and experiments at the Large Hadron Collider at Cern). They are formed by a heavy quark, a heavy antiquark and some other component (gluonic-hybrids- or light quarks-tetraquarks) that make them non-standard. The properties of these states are directly related to the non-perturbative nature of low energy QCD and to the confinement mechanism of strong interactions. Lattice calculations of the hybrid and tetraquark static energies are available. The scope of the thesis is to use these lattice curves together with elementary notions of nonrelativistic effective field theories to obtain interaction potentials and solve numerically appropriate Schrödinger equations to obtain information on the masses and transitions of these exotic states.

Advisors: Prof. N. Brambilla, PD Dr. A. Vairo, Dr. Segovia, Dr. Wai Kin

geeignet als
  • Bachelorarbeit Physik
Themensteller(in): Nora Brambilla

Abgeschlossene und laufende Abschlussarbeiten an der Arbeitsgruppe

Aspects of Van der Waals Interactions
Abschlussarbeit im Bachelorstudiengang Physik
Themensteller(in): Nora Brambilla

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.