PD Dr. Antonio Vairo

Telefon
+49 89 289-12886
Raum
Physik I: 3215
E-Mail
antonio.vairo@mytum.de
Links
Homepage
Visitenkarte in TUMonline
Arbeitsgruppen
Angewandte Quantenfeldtheorie
Fakultät für Physik
Funktion
Privatdozent am Physik-Department

Lehrveranstaltungen und Termine

Ausgeschriebene Angebote für Abschlussarbeiten

Wilson loop and confinement

Quark and gluons interact strongly. At low energy in particular their interaction coupling constant becomes large, giving origin to the property of confinement: quarks are therefore confined into hadrons. The field theory describing the strong interactions, QCD (Quantum Chromodynamics), displays such property. However, the study of confinement should be performed with non-perturbative methods. Lattice QCD is such a method, in which the Lagrangian of QCD is discretized on a space-time lattice and field theoretical calculations are reduced to the numerical computation of multidimensional integrals. An object of particular interest in relation to confinement studies is a correlator called Wilson loop.
Scope of this thesis is to test and optimize a code for the calculation of the Wilson loop in QCD and to understand how confinement arises from the behavior of the Wilson loop.

Advisors: Prof. N. Brambilla, Pd. A. Vairo, Dr. J. Weber

geeignet als
  • Bachelorarbeit Physik
Themensteller(in): Nora Brambilla
X, Y, Z states

X, Y, Z states are exotics states observed in the heavy quarkonium sector at several high energy accelerator experiments (Belle in Japan, BES in China and experiments at the Large Hadron Collider at Cern). They are formed by a heavy quark, a heavy antiquark and some other component (gluonic-hybrids- or light quarks-tetraquarks) that make them non-standard. The properties of these states are directly related to the non-perturbative nature of low energy QCD and to the confinement mechanism of strong interactions. Lattice calculations of the hybrid and tetraquark static energies are available. The scope of the thesis is to use these lattice curves together with elementary notions of nonrelativistic effective field theories to obtain interaction potentials and solve numerically appropriate Schrödinger equations to obtain information on the masses and transitions of these exotic states.

Advisors: Prof. N. Brambilla, PD Dr. A. Vairo, Dr. Segovia, Dr. Wai Kin
Lai

geeignet als
  • Bachelorarbeit Physik
Themensteller(in): Nora Brambilla

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.

Biophysik

Biologische Systeme, vom Protein bis hin zu lebenden Zellen und deren Verbänden, gehorchen physikalischen Prinzipien. Unser Forschungsbereich Biophysik ist deutschlandweit einer der größten Zusammenschlüsse in diesem Bereich.