de | en

Theory of Complex Bio-Systems

Prof. Ulrich Gerland

Research Field

In physics, interactions between particles follow laws. In biology, interactions between biomolecules serve a function. We study the physics of biological functions. In particular, we are interested in cases where the implementations of biological functions are constrained by physical principles. Methods from statistical physics help to describe the functioning of complex biomolecular systems on a coarse-grained, but quantitative level.

Address/Contact

James-Franck-Str. 1/I
85748 Garching b. München

Members of the Research Group

Professor

Office

Scientists

Students

Other Staff

Teaching

Course with Participations of Group Members

Titel und Modulzuordnung
ArtSWSDozent(en)Termine
Computational Methods for Molecular Evolution
aktuelle Informationen
Zuordnung zu Modulen:
VO 2 Braun, D. Frey, E. Gerland, U. Do, 14:00–16:00, virtuell
Theorie stochastischer Prozesse
eLearning-Kurs
Zuordnung zu Modulen:
VO 4 Gerland, U. Mo, 08:30–10:00, virtuell
Mi, 12:00–14:00, virtuell
Aktuelle Fragen der Theorie komplexer Biosysteme
Zuordnung zu Modulen:
HS 2 Gerland, U. Mi, 10:00–12:00, PH 3343
Übung zu Theorie stochastischer Prozesse
Zuordnung zu Modulen:
UE 2
Leitung/Koordination: Gerland, U.
Termine in Gruppen
Biomolecular Systems
Zuordnung zu Modulen:
SE 2 Gerland, U. Simmel, F. Zacharias, M. Do, 12:00–13:30, virtuell
Repetitorium zu Aktuelle Fragen der Theorie komplexer Biosysteme
Zuordnung zu Modulen:
RE 2
Leitung/Koordination: Gerland, U.
Tutorenseminar zu Theorie stochastischer Prozesse
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
SE 2 Gerland, U.

Offers for Theses in the Group

Growing shapes: Kinetics of integrating cell wall material into the envelope of a growing cell

The aim of this Master thesis is to explore different modes of cell wall growth, which is locally controlled by enzymes but has a global effect on the shape of the cell. Which schemes of enzymatic action permit stably growing cell shapes? And which ones can mimick the observed growth behavior of different bacterial species? These fundamental questions are surpisingly largely open, partially due to the difficulty of experimentally determining which local properties of the cell wall affect the enzymatic activity. In light of this experimental barrier, conceptual theoretical models can classify different plausible schemes by their large-scale behavior, which is more easily observed experimentally. This thesis will combine simulations of stochastic models for growing shapes with simple analytical toy models to address some of the open questions.

suitable as
  • Master’s Thesis Biophysics
  • Master’s Thesis Theoretical and Mathematical Physics
Supervisor: Ulrich Gerland

Current and Finished Theses in the Group

Effects of histone depletion and remodeler knockout on nucleosome positioning in S. cerevisiae
Abschlussarbeit im Masterstudiengang Physik (Biophysik)
Themensteller(in): Ulrich Gerland
Impact of Complex Spikes on the Integration of Parallel Fiber Input in Purkinje Cells
Abschlussarbeit im Masterstudiengang Physik (Biophysik)
Themensteller(in): Ulrich Gerland
A Minimal Model for Tissue Homeostasis in the Small Intestine Based on Probabilistic Cellular Automata
Abschlussarbeit im Masterstudiengang Physik (Biophysik)
Themensteller(in): Ulrich Gerland
Long-Term Starvation Experiments of E. Coli in a Microfluidic Device
Abschlussarbeit im Masterstudiengang Physik (Biophysik)
Themensteller(in): Ulrich Gerland
Top of page