M.Sc. Theophilus Kobina Sarpey
- Phone
- +49 89 289-14528
- Room
- –
- theok.sarpey@tum.de
- Links
-
Page in TUMonline
- Group
- Physics of Energy Conversion and Storage
Courses and Dates
Title and Module Assignment | |||
---|---|---|---|
Art | SWS | Lecturer(s) | Dates |
FOPRA Experiment 22: Laser-Induced Current Transient Technique (AEP, KM) course documents Assigned to modules:
|
|||
PR | 1 |
Sarpey, T.
Responsible/Coordination: Bandarenka, A. |
Offered Bachelor’s or Master’s Theses Topics
- Exploring renewable energy systems with laser induced current transient thechnique
The advent of ultrafast lasers has paved the way and eased the investigations of mechanisms and phenomena, which hitherto were difficult to interrogate or measure. One of such mechanisms is the kinetics of the electrified electrode-electrolyte interface. The laser induced current transient (LICT) technique has proven to be a robust, unique, and indispensable tool for predicting to a high degree of accuracy the activity of reactions by identifying the so-called potential of maximum entropy (PME). The PME is the potential at the interface at which the degree of disorder peaks. At the PME, the reaction should proceed faster than at potentials remote from it. Thus, one can anticipate that the closer the PME is to the thermodynamic equilibrium potential of an electrocatalytic reaction, the faster the kinetics of this reaction should be. By employing the LICT technique, the PME measured at the electrode-electrolyte interface (i.e., Au polycrystalline electrode and Ar-saturated Na2SO4 electrolyte at a pH of 8) has been reported to be 0.58 V vs RHE. However, using Ar-saturated K2SO4 at the same pH yielded a PME value of 1.30 V vs RHE. Therefore, it is our considered view that this presents a stupendous opportunity to tailor the cation mixture of Na+ and K+ as electrolyte to obtain a PME value of 1.23 V vs RHE, the thermodynamic equilibrium potential of the oxygen reduction reaction (ORR). Hence, this presents the leeway for optimizing the activity towards the ORR via the tuning of the electrolyte cation concentration.
- suitable as
- Master’s Thesis Condensed Matter Physics
- Supervisor: Aliaksandr Bandarenka
Publications
- Exploration of the electrical double-layer structure: Influence of electrolyte components on the double-layer capacitance and potential of maximum entropy
- Richard W. Haid (author), Xing Ding (author), Theophilus Kobina Sarpey (author), Aliaksandr S. Bandarenka (author), Batyr Garlyyev (author)
- 2022-04
- journal article
- Current Opinion in Electrochemistry
- DOI: 10.1016/j.coelec.2021.100882
- Dual In‐situ Laser Techniques Underpin the Role of Cations in Impacting Electrocatalysts
- 2022-03-10
- journal article
- Angewandte Chemie
- URL: http://dx.doi.org/10.1002/ange.202201610
- DOI: 10.1002/ange.202201610
- ISSN: 0044-8249
- ISSN: 1521-3757
- Prospects of Using the Laser‐Induced Temperature Jump Techniques for Characterisation of Electrochemical Systems
- 2021-12-15
- journal article
- ChemElectroChem
- URL: http://dx.doi.org/10.1002/celc.202101175
- DOI: 10.1002/celc.202101175
- ISSN: 2196-0216
- ISSN: 2196-0216
- Spotlight on the Effect of Electrolyte Composition on the Potential of Maximum Entropy: Supporting Electrolytes Are Not Always Inert
- 2021-07-12
- journal article
- Chemistry – A European Journal
- URL: http://dx.doi.org/10.1002/chem.202101537
- DOI: 10.1002/chem.202101537
- ISSN: 0947-6539
- ISSN: 1521-3765
- Optical Characterisation of femtosecond Laser-induced periodic surface structures fabricated on stainless steel substrate material utlising static linearly polarised laser pulses (Optical Characterisation of fs LIPSS )
- 2016-07-12
- supervised student publication
- University of Jena Library and Thuringia Library
- URL: https://www.db-thueringen.de/servlets/MCRFileNodeServlet/dbt_derivate_00035461/masterthesisfinal_TKS.pdf
- URN: urn:nbn:de:gbv:27-dbt-20160713-1323057
- Measurement of the diffraction efficiency with local resolution of a volume Bragg grating on fused silica
- Theophilus Kobina Sarpey
- 2014
- other
- Institute of Applied Physics, Friedrich Schiller Universität, Jena, Germany
- DOI: 10.13140/rg.2.1.1263.8566
See ORCID profile of Theophilus Kobina Sarpey as well.