Arbeitsgruppen am Physik-Department

Angewandte Quantenfeldtheorie

Our group focuses on the development and application of theoretical methods in the physics of strong interactions, the fundamental forces which are responsible for the inner structure of protons and neutrons as well as for the structure of nuclei. The basis of these investigations is Quantum Chromo Dynamics (QCD), the theory of the interaction of quarks and gluons. Part of this program is the investigation of the substructure of baryons and mesons as well as the explanation of the wealth of phenomena resulting from the collective interplay of these particles in nuclei.

Beobachtende Kosmologie (Prof. Sherry Suyu)

Mit Hilfe des beeindruckenden Effekts von Gravitationslinsen, werfen wir einen Blick in den dunklen Kosmos: dunkle Energie, dunkle Materie und supermassive schwarze Löcher.

Biomedizinische Physik (Prof. Franz Pfeiffer)

Our interdisciplinary research portfolio is focused on the translation of modern x-ray physics concepts to biomedical sciences and clinical applications. We are particularly interested in advancing conceptually new approaches for biomedical x-ray imaging and therapy. From a medical perspective, our work currently targets early cancer and osteoporosis diagnostics.

Biomolekulare Nanotechnologie (Prof. Hendrik Dietz)

We develop novel scientific devices and methods for applications in biomolecular physics, biological chemistry, and molecular medicine. To this end, we currently focus on using DNA as a programmable construction material for building nanometer-scale scientific devices with atomically precise features. We also customize proteins and create and study hybrid DNA-protein complexes. 3D transmission electron microscopy, atomic force microscopy, and single molecule methods such as optical trapping and fluorescence microscopy are among our routine analysis tools.

Chemische Physik fern des Gleichgewichts (Prof. Katharina Krischer)

We are working on topics falling into two different areas: Nonlinear Dynamics (e.g. Pattern Recognition, Pattern Formation during Si-Electrodissolution, Pattern Formation in Electrocatalytic Reactions, Complex Ginzburg-Landau Equation) and Artificial Photosynthesis - Photoelectrochemistry.

Dichte und seltsame hadronische Materie (Prof. Laura Fabbietti)

We experimentally investigate the properties of strange particles produced in heavy-ion and elementary reactions at intermediate beam energies. Our goal is to understand the interaction of particles which contain a strange quark with nucleons under different density and temperature conditions.

Dunkle Materie (Prof. Susanne Mertens)

Wir untersuchen ein schwer fassbares Teilchen, das Neutrino, um fundamentale Rätsel der Physik zu entschlüsseln: Woraus ist das Universum gemacht? Wie entwickelten sich Strukturen? Warum besteht unsere Welt aus Materie und nicht aus Antimaterie?

Experimentalphysik mit kosmischer Strahlung (Prof. Elisa Resconi)

In our group, astro- and particle physics, ground- and space-based experiments, photon and neutrino observations are combined in a scientific program in order to address the following questions: How do astrophysical accelerators work? Do neutrinos have non standard properties, beyond standard oscillation? What is the mass hierarchy of neutrinos? Is the proton stable? Where and what is dark matter?

Experimentelle Astroteilchenphysik (Prof. Stefan Schönert)

Our group is involved in a number of research projects in neutrino physics and dark matter research.

Experimentelle Astroteilchenphysik (Prof. Lothar Oberauer)

Our group is involved in a number of research projects on neutrino physics and dark matter research.

Experimentelle Halbleiterphysik (Prof. Martin Stutzmann)

Our work at the Walter Schottky Institut deals with various aspects of new and non conventional semiconductor materials and material combinations: semiconductors with a wide bandgap, disordered semiconductors, advanced thin film systems etc.

Funktionelle Materialien (Prof. Winfried Petry)

We examine the physical fundamentals of material properties using scattering methods (neutrons-, x-ray and dynamic light scattering). The general goal of our research is to jugde from the knowledge of the microscopic dynamics and structure for explaining the functional characteristics of condensed matter.

Hadronenstruktur und Fundamentale Symmetrien (Prof. Stephan Paul)

Our group involved in a number of research projects dealing with high energy particle physics and neutron physics.

Halbleiter-Nanostrukturen und -Quantensysteme (Prof. Jonathan Finley)

Our group explores a wide range of topics related to the fundamental physics of nanostructured materials and their quantum-electronic and -photonic properties. We study the unique electronic, photonic and quantum properties of materials patterned over nanometer lengthscales and explore how sub-components can be integrated together to realise entirely new materials with emergent properties. This convergence of materials-nanotechnology, quantum electronics and photonics is strongly interdisciplinary, spanning topics across physics, materials science and engineering.

Kollektive Quantendynamik (Prof. Michael Knap)

Wir erforschen eine breite Klasse an Fragestellungen in der Theorie der kondensierten Materie, die auch zu Quantenoptik, Atomphysik und computerorientierter Physik übergreifen. Wechselwirkungen und Korrelationen in kondensierter Materie führen zu eindrucksvollen und neuartigen Phänomenen, welche durch das kollektive Verhalten der Quantenteilchen entstehen. Beispiele, die in der Natur vorkommen, sind unter anderem Supraleitung, Quantenmagnetismus und Suprafluide. Unsere Forschung untersucht Nichtgleichgewichtsquantendynamik und Transport in ultrakalten Quantengasen, Licht-Materie Systemen sowie in korrelierten Quantenmaterialien.

Laser- und Röntgenphysik (Prof. Reinhard Kienberger)

Our group aims at investigating processes inside atoms and molecules on the shortest timescale reached so far, the attosecond timescale. One attosecond compares to one second like one second to the age of the universe. New insight into ever smaller microscopic units of matter as well as in ever faster evolving chemical, physical or atomic processes pushes the frontiers in many fields in science. The interest in these ultrashort processes is the driving force behind the development of sources and measurement techniques that allow time-resolved studies at ever shorter timescales.

Molekulardynamik (Prof. Martin Zacharias)

Die Funktion von Proteinen und Nukleinsäuren in lebenden Zellen wird durch ihre molekulare Dynamik bestimmt. Am Lehrstuhl „Molekulardynamik“ werden Computersimulationsmethoden eingesetzt, um die Struktur, Funktion und Dynamik von Biomolekülen zu untersuchen. Zu unseren Zielen zählt dabei ein genaueres Verständnis von Strukturbildungsprozessen und die Entschlüsselung des Mechanismus der Assoziation von Biomolekülen.

Molekulare Biophysik (Prof. Matthias Rief)

Proteins are fascinating examples of self-organized molecular machines. Without any help a polypeptide strand can fold into functional threedimensional structures. We are interested in studying the function and folding process of proteins on the single molecule level. Examples are single molecule folding/unfolding studies or the motility of molecular motors in optical traps.

Molekulare Maschinen

Single molecule methods are essential for a thorough understanding of complex biological processes. They allow real time observation of molecular machines at work and their specific manipulation. Results of such experiments yield new insights into problems from fundamental physics at the nano-scale to the development of new drugs.

Molekulare Nanowissenschaft an Grenzflächen (Prof. Wilhelm Auwärter)

Our research focuses on the creation of nanoscale model systems on atomically tailored surfaces, enabling the study and control of single-molecule processes as well as the self-assembly of supramolecular structures. The studies are inspired by the chemistry of life – which shows how functionally versatile a single set of molecular building blocks can be – and oriented toward innovation in nanotechnology.

Nanotechnologie und Nanomaterialien (Prof. Alexander Holleitner)

The Holleitner group investigates optoelectronic phenomena in nanoscale circuits with special focus on ultrafast optoelectronics, quantum optoelectronics, and excitonic systems. The research topics aim to fully exploit the potential of nanoscale circuits for optoelectronic and photovoltaic applications, as well as for communication and information technologies.

Neutronenstreuung (Prof. Peter Böni)

Scientific activities covered by our group include the fundamental properties of magnetic and superconducting materials (bulk compounds and thin films), materials science and a few selected problems in particle physics. Our group has a long tradition in neutron related research, notably the development of state-of-the-art neutron scattering techniques.

Nukleare Astrophysik (Prof. Shawn Bishop)

Our group works on a number of research projects on nuclear astrophysics, chemical evolution of the universe, as well as synthesis of nuclear physics, astronomy and stellar theory.

Oberflächen- und Grenzflächenphysik (Prof. Johannes Barth)

Unsere Forschungsaktivitäten zielen auf das fundamentale Verständnis von Phänomenen an Grenzflächen sowie deren Kontrolle zum Design funktioneller niedrig-dimensionaler Nanostrukturen. Wir erforschen und manipulieren einzelne Nano-Objekte und hochorganisierte supramolekulare Systeme.

Physik der Energiewandlung und -speicherung (Prof. Aliaksandr Bandarenka)

We conduct research in the area of the physics of energy conversion and storage. The main topics include the design and implementation of functional materials and a better understanding and characterization of electrified interfaces. The material design is based on a bottom-up approach using input from electrochemical surface science and starting from model surfaces.

Physik der Hadronen und Kerne

Kernspektroskopie und Angewandte Kernphysik: Durch hochauflösende Spektroskopie von Kernen ist es möglich Rückschlüsse auf die effektiven Wechselwirkungen im Kern zu erhalten. Dabei untersuchen wir meist Kerne unter extremen Bedingungen, um verschiedene Komponenten der Wechselwirkung zu studieren. Unsere Gruppe beschäftigt sich auch mit der Entwicklung und Nutzung von kernphysikalischen Methoden für andere Gebiete, wie zum Beispiel der Astrophysik und der Materialanalyse.

Physik der weichen Materie (Prof. Christine Papadakis)

Das Fachgebiet Physik weicher Materie befasst sich mit den Struktur, Dynamik und Kinetik von nanostrukturierten Polymersystemen, u.a. amphiphilen und schaltbare Blockcopolymeren, dünnen Polymerfilmen, sowie Polymeren für medizinische Anwendungen. Es werden hauptsächlich Streumethoden eingesetzt, sowohl an Großforschungsanlagen als auch im Labor.

Physik funktionaler Schichtsysteme (Prof. Florian Klappenberger)

De Haas-van Alphen-Effekt, Streufeld-Verteilung, Spintronics, Magnetisierungsdynamik, Mikromagnetische Simulation, EMR- und Hall-Sensoren, Magnonics

Physik synthetischer Biosysteme (Prof. Friedrich Simmel)

Our goal is the realization of self-organizing molecular systems that are able to respond to their environment, compute, move, take action.

Plasmarand- und Divertorphysik (Prof. Ulrich Stroth)

Wir vertreten das Gebiet der Plasmaphysik an der TUM in Lehre und Forschung. Der Fokus unserer Arbeiten liegt auf den Gebiet der magnetisierten Hochtemperaturplasmen, die in Fusionsexperimenten oder auch im Universum zu beobachten sind. Unser besonderes Interesse gilt Prozessen, die für die Entwicklung der Fusion als zukünftige Energiequelle wichtige sind.

Quantenmaterie (Prof. Elena Hassinger)

Our group focuses on Quantum Matter, materials with unusual electronic properties. We study these materials by experimental investigations at very low temperature and under high magnetic field and high pressure. Particularly, we are trying to understand the electronic behavior in novel states of matter through a direct detection of the Fermi surface via quantum oscillations, a fundamental “fingerprint” of a material.

Technische Physik (Prof. Rudolf Gross)

The research activities of the Walther-Meißner-Institute are focused on low temperature solid-state and condensed matter physics. The research program is devoted to both fundamental and applied research and also addresses materials science, thin film and nanotechnology aspects.

Teilchenphysik mit Neutronen (Prof. Peter Fierlinger)

Our research deals with experiments that should help to understand properties of the early Universe. We currently focus on the nature of the excess of matter versus antimatter. In most scenarios that describe this so-called baryogenesis, new sources of broken symmetries in the early Universe are required. Electric dipole moments (EDM) of fundamental quantum systems are interesting systems to investigate such new sources of CP (or T) violation in the baryon-sector, beyond the Standard Model of particle physics (SM).

Theoretische Biophysik neuronaler Informationsverarbeitung (Prof. van Hemmen)

Wir erforschen Aufbau und Funktionsweise von informationsverarbeitenden Systemen in der Natur. Ziel ist es, aus grundlegenden Bausteinen der Wahrnehmung universelle Prinzipien abzuleiten. Ein solcher Baustein kann sowohl ein spezielles sensorisches System als Ganzes, als auch ein einzelnes Glied in einer sensorischen Verarbeitungskette repräsentieren. Dabei reduzieren wir die Prozesse der Informationsaufbereitung derart, dass mathematisches Verständnis und gleichzeitig experimentelle Überprüfbarkeit möglich werden.

Theoretische Elementarteilchenphysik (Prof. Martin Beneke)

Unser Forschungsgebiet ist die theoretische Elementarteilchenphysik. Wir untersuchen die Phänomenologie von Kollisionen in Teilchenbeschleunigern, höhere Ordnungen in der Störungstheorie, die Suche nach Physik jenseits des Standardmodells sowie die Physik des Standardmodells, die Physik schwerer Quarks (bottom, top), CP-Verletzung, die Physik der starken Wechselwirkung und einige Aspekte der Kosmologie/Dunkelmaterie.

Theoretische Elementarteilchenphysik (Prof. Alejandro Ibarra)

The Standard Model of Particle Physics provides an excellent description of nature at distances larger than E-16 cm, or equivalently energies smaller than 100 GeV. However, there are reasons to believe that the Standard Model is incomplete and needs to be extended. Our research group considers extensions of the Standard Model that might account for these observations and we study their consequences for present and future experiments.

Theoretische Festkörperphysik

How small can a computer, a circuit, a transistor, or a laser be made? Can one design electronic nano-switches that consume no power? How fast can we communicate information inside of a device? How much information can we store on a square nanometer? How do atoms behave when we arrange them in chains, rings, nets, clusters, pyramids, doughnuts? What happens when....

Theoretische Festkörperphysik (Prof. Frank Pollmann)

Wir sind an einer Vielzahl von Problemen in der Theorie der kondensierten Materie interessiert. Unser Schwerpunkt liegt auf der Untersuchung von Phänomenen, die durch quantenmechanische Effekte in Systemen korrelierter Elektronen entstehen. Zu den Forschungsgebieten gehören die Untersuchung topologischer Phasen der Materie, geometrisch frustrierte Systeme, die Dynamik in Quanten-Vielteilchensystemen und die Anwendung von Quanteninformationskonzepten.

Theoretische Physik des frühen Universums (Prof. Björn Garbrecht)

The cosmic evolution depends sensitively on initial conditions, such as the matter-antimatter asymmetry, the Dark Matter abundance and density perturbations, that eventually grow into galaxies. Understanding the initial conditions is one of the key motivations for exploring Physics beyond the Standard Model. Cosmology thus complements laboratory experiments such as the Large Hadron Collider. The particular research interests of our group encompass the origin of the matter-antimatter asymmetry and of density perturbations from inflation.

Theoretische Teilchenphysik an Collidern (Prof. Andreas Weiler)

The aim of our work is to develop plausible theories that address the problems of the Standard Model and to derive signatures, which can be tested at experiments like the Large Hadron Collider at CERN. The central question is the nature of electro-weak symmetry breaking, and the properties of the Higgs particle, which is central to the whole enterprise. The properties of the electroweak symmetry breaking sector remain nebulous, and yet there is no doubt their influence is crucial in many areas of physics such as flavour and CP violation, early Universe cosmology and dark-matter.

Theoretische Teilchenphysik und Kosmologie (Prof. Michael Ratz)

Extensions of the standard model of particle physics, e.g. unified theories and higher-dimensional theories, supersymmetry, supergravity and string phenomenology and neutrinos. Early universe, cosmology and astro-particle physics, e.g. general aspects and in the supersymmetric context.

Theoretische Teilchen- und Kernphysik (Prof. Nora Brambilla)

Effective Quantum Field Theories (EFTs) are the state-of-the-art tools for analyzing physical systems that contain many different energy or momentum scales. Such systems are the rule, rather than the exception, from the "high"-energy domain of Particle Physics to the "low"-energy domain of Nuclear Physics.

Theorie der weichen Materie

Using statistical mechanics, we investigate the role of molecular-level interactions and structural order (or disorder) on the phase behaviour (e.g. liquid-to-solid transitions) and macroscopic properties of complex condensed matter systems, such as colloids, functional materials, amorphous metals and polymers, and self-assembled biomolecules.

Theorie komplexer Biosysteme (Prof. Ulrich Gerland)

In physics, interactions between particles follow laws. In biology, interactions between biomolecules serve a function. We study the physics of biological functions. In particular, we are interested in cases where the implementations of biological functions are constrained by physical principles. Methods from statistical physics help to describe the functioning of complex biomolecular systems on a coarse-grained, but quantitative level.

Topologie korrelierter Systeme (Prof. Christian Pfleiderer)

Scientific activities covered at our institute include the fundamental properties of magnetic and superconducting materials (bulk compounds and thin films), materials science and a few selected problems in particle physics. The institute has a long tradition in neutron related research, notably the development of state-of-the-art neutron scattering techniques.

Vielteilchenphänomene (Prof. Wilhelm Zwerger)

Research in the theory group led by Prof. Wilhelm Zwerger is focused on quantum and statistical physics in a wide range of areas, from condensed matter physics and nanostructures to ultracold gases and the interface between quantum optics and solid state physics. We are working in collaboration with a number of groups in the Munich area and beyond, in particular with the Max-Planck-Institute for Quantum Optics (MPQ) and within the Nano-Inititative Munich (NIM).

Zellbiophysik (Prof. Andreas Bausch)

Understanding complex biomaterials on a fundamental physical basis is an integral challenge of future biophysical research. This challenge can be addressed by the concerted application of new experimental tools of soft condensed matter physics to living cells and bio-mimetic model systems. In our group we concentrate on the one hand on developing new physical tools to address the underlying complexity and mechanisms and on the other hand on developing new biomaterials for applications ranging from biomedicine to functional food.

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.


Biologische Systeme, vom Protein bis hin zu lebenden Zellen und deren Verbänden, gehorchen physikalischen Prinzipien. Unser Forschungsbereich Biophysik ist deutschlandweit einer der größten Zusammenschlüsse in diesem Bereich.