Funktionelle Materialien

Prof. Winfried Petry

Forschungsgebiet

We examine the physical fundamentals of material properties using scattering methods (neutrons-, x-ray and dynamic light scattering). The general goal of our research is to jugde from the knowledge of the microscopic dynamics and structure for explaining the functional characteristics of condensed matter.

Adresse/Kontakt

James-Franck-Str. 1/I
85748 Garching b. München
+49 89 289 12452
Fax: +49 89 289 12473

Mitarbeiterinnen und Mitarbeiter der Arbeitsgruppe

Professorinnen und Professoren

Mitarbeiterinnen und Mitarbeiter

Lehrangebot der Arbeitsgruppe

Lehrveranstaltungen mit Beteiligung der Arbeitsgruppe

Titel und Modulzuordnung
ArtSWSDozent(en)Termine
Experimentalphysik 2 (MSE)
Zuordnung zu Modulen:
VO 3 Müller-Buschbaum, P. Di, 12:00–14:00, MW 2001
Do, 10:00–11:00, 5620.01.102
Magnetic Small-Angle Neutron Scattering
Zuordnung zu Modulen:
VO 2 Mühlbauer, S.
Mess- und Sensortechnologie (MS&E)
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
VO 2 Große, C. Müller-Buschbaum, P. Mi, 10:00–12:00, PH II 227
Physics with neutrons 2
Zuordnung zu Modulen:
VO 2 Petry, W. Mi, 12:00–14:00, PH-Cont. C.3203
Exercise Physics with Neutrons 2
Zuordnung zu Modulen:
UE 2
Leitung/Koordination: Petry, W.
Termine in Gruppen
Übung zu Experimentalphysik 2 (MSE)
Zuordnung zu Modulen:
UE 1 Körstgens, V.
Leitung/Koordination: Müller-Buschbaum, P.
Termine in Gruppen
Übung zu Magnetische Neutronen-Kleinwinkelstreuung
Zuordnung zu Modulen:
UE 2
Leitung/Koordination: Mühlbauer, S.
Übung zu Mess- und Sensortechnologie (MS&E)
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
UE 1
Leitung/Koordination: Müller-Buschbaum, P.
Termine in Gruppen
Edgar-Lüscher-Lehrerfortbildungs-Seminar "Große Instrumente für große Fragestellungen"
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
WS 2 Petry, W. Fr, 08:00–20:00

Ausgeschriebene Angebote für Abschlussarbeiten an der Arbeitsgruppe

Development of a flexible sample environment for neutron scattering on multi-stimuli responsive hydrogel thin films

Since several decades, multi-stimuli responsive hydrogels are attracting the scientific focus, based on their versatile applicability in the fields of sensoric, drug delivery or nano-switches. When changing an external stimulus such as pH, temperature, pressure or light illumination specific dynamic processes are taking place inside the hydrogel network. Thus, these polymers are an interesting foundation for new research fields such as green architecture or soft robotics. In order to apply responsive hydrogels in the aforementioned technical fields, the mechanisms behind these dynamic processes are an object of current research.

Neutron scattering is a powerful and suitable measurement technique for studying dynamic activities inside a hydrogel. Information about thickness, material composition and roughness can be obtained, even during dynamic processes.

The task is to develope a setup for grazing incidence small angle neutron scattering (GISANS) and as such development is required onthe final design and layout of the measurement setup,a quick and reliable sample change system,the electronical circuit and connections to the measurement chamber,a remote-control of all elements andthe read-out system.

First measurements with the constructed sample environment will be performed at neutron scattering instruments at the MLZ.

geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Peter Müller-Buschbaum
High efficiency next generation solar cells

Next generation solar cells are solar cells beyond the silicon type photovoltaic devices. Organic solar cells have reached efficiencies in the champion solar cells well above 10%. Key element of such solar cells is the highly designed active layer, which transfers light into separated charge carriers. Aim of this experimental project is the preparation and full characterization of an active layer for high performance organic photovoltaic devices to further understand the fundamental correlation between morphology and solar cell performance. In this work a novel efficiency record-setting system will be investigated regarding the influence of an additional third component, in our case, either solvent additive or polymer. The project will involve a literature review, sample preparation, photovoltaic device fabrication and photoluminescent measurements. The focus is the usage of advanced scattering techniques for the determination of structural length scales of the active layer in the solar cell.

geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Peter Müller-Buschbaum
Interfaces between polymer electrolyte, electrodes and metal current collectors of thin film lithium-ion batteries

Our world without lithium ion batteries (LIBs) is hardly imaginable. They are used in nearly every electronic mobile device like laptops, cellphones, cars and medical power implants. But their potential for developing safer and more powerful batteries is not exploited yet since the major LIB production uses technologies commercialized in 1991. Aiming for novel thin film LIBs from solution based processing using polymer electrolytes and sophisticated hybrid electrodes can be the key to new, fast chargeable, high energy and power density LIBs.

Using diblock copolymers like polystyrene-block-polyethylene oxide (PS-b-PEO) with a mechanically and thermally stable PS block and a soft, lithium-ion conducting PEO block enables the fabrication of solid state polymer thin film lithium-ion batteries and even the application of metallic lithium as anode. To increase charge and discharge rates of Li-ion batteries – one of the main drawback of batteries compared to e.g. fossil fuels – these thin film batteries are a promising approach.

The task will be the fabrication of lab scale thin film Li-ion batteries via spin-coating, the morphological investigation of the functional polymer based layers of the battery and their interfaces as well as the revelation of their conductivity and influence on the batteries’ performance. Therefor advanced scattering techniques like grazing incidence small angle X-ray scattering (GISAXS) and X-ray reflectometry (XRR), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and battery cycling.

geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Peter Müller-Buschbaum
Looking into the soft behavior of hybrid crystalline perovskite thin film

Solar cells based on organometallic lead halide perovskites have established themselves as a promising alternatives to commercial thin film solar cells. Photovoltaic conversion efficiencies have seen an increase from first reports of 3.8% to certified efficiencies of over 22% in less than a decade since the inception of the field. The crystallographic versatility of the material allows the possibility of extensive chemical tuning, which manifests in the material as a spectra of properties that may be obtained. This entices research on hybrid perovskite structures combining different organic and inorganic groups into a crystalline framework. Recent evidence indicates that the class of perovskite materials display characteristics which are suggestive of ‘soft matter’ like behavior. Ideal candidates would be helping demonstrate this claim through experimental work. The opportunity to be carrying out work in sophisticated environments, such as working in glovebox or carrying out state-of-the-art experiments at synchrotron sources are feasible. Other characterization techniques would be utilized for relevant archetypal measurements.

The project falls within a rapidly progressing field with great potential for industrialization. Inspired, promising candidates with good academic background and research experience may apply in order to acquire experience on relevant materials, electronic devices made thereof and characterization techniques for holistic knowledge within the booming field.


geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Peter Müller-Buschbaum
Novel nanostructured thermoelectric hybrid materials

In this project, we aim to fabricate and investigate novel organic-inorganic hybrid materials for thermoelectric applications. The goal is to realize efficient low temperature (T < 100°C) thermoelectric thin films and coatings which can contribute for example to energy efficient buildings. By combining nanostructured inorganic materials with conducting polymers a novel approach for this class of materials shall be realized. Possible inorganic nanomaterial components include Silicon nanocrystals (either undoped, n-type or p-type doped) as well as other nanoparticles. Different polymer materials such as the polymer blends of conjugated polymers, which can be tuned in conductivity and in its nanostructure, shall be used as the organic partner in our hybrid approach.

geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Peter Müller-Buschbaum
Smart nano-sensors made of stimuli-responsive polymers in solution and in thin films

Whereas macroscopic sensors made of stimuli-responsive hydrogels are well established, in the nanoworld such sensors still face many challenges. Potential fields of application of such sensors extend from engineering to bioengineering and medicine, e.g. as nanosensors for the control of concentration of glucose for diabetes patients or as switchable surface in the frame of tissue engineering. In this experimental project smart hydrogels, made of stimuli-responsive hydrogels will be investigated. Hydrogel films with thicknesses of a few tens to some hundreds of nanometers and spontaneously deswell or swell due to external stimuli, like temperature or the concentrations of ions. The changes in thickness and in molecular interactions in swelling or collapsing hydrogels will be probed during the switching process by different lab-based techniques. A comprehensive understanding of the switching process can be achieved by complementary neutron scattering experiments at large scale facilities. The project will involve a literature review, preparation of hydrogels, as well as experimental investigations and interpretations of the repeated switching of the stimuli-responsive hydrogels.


geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Peter Müller-Buschbaum
Structural analysis of hybrid polymer–solid thin films

Nanostructured polymer–solid hybrid thin films have gained a lot of attention during the last decade owing to the broad spectrum of technological applications such as solar cell, Li-ion battery, OLEDs and sensors. The structure of metal nanoparticles-polymer hybrid thin film is successfully probed with advanced grazing-incidence small-angle X-ray technique (GISAXS). In-situ GISAXS study of metal deposition on nanostructured polymer templates is performed at large-scale facility DESY, in Hamburg. In a millisecond time-resolved experiment, large amount of data is generated that enables a real-time monitoring of the growth kinetics of metal nanoparticles on the polymer surfaces. To characterize the structure of these polymer-solid hybrid materials, analysis models needs to be developed for interpreting the resulting GISAXS patterns. Software packages, useful for data analysis for advanced grazing-incidence techniques, are currently available. Structural information on the hybrid films, including the metal particle size, size distribution, positional distribution factor, and particle mobility on the sample surface can be obtained, by applying these analysis models to fit the experimental GISAXS data. The work will answer open questions on how the high-ordered arrays of solid materials forms on polymer surfaces, starting from microscopic (atomistic) up to mesoscopic (aggregate) level.

geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Peter Müller-Buschbaum

Abgeschlossene und laufende Abschlussarbeiten an der Arbeitsgruppe

Prediction and Experimental Investigation of Eutectics of Multicomponent Salt Hydrate Mixtures
Abschlussarbeit im Masterstudiengang Physik (Physik der kondensierten Materie)
Themensteller(in): Peter Müller-Buschbaum

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.