Diese Webseite wird nicht mehr aktualisiert.

Mit 1.10.2022 ist die Fakultät für Physik in der TUM School of Natural Sciences mit der Webseite https://www.nat.tum.de/ aufgegangen. Unter Umstellung der bisherigen Webauftritte finden Sie weitere Informationen.

de | en

Near-Earth Objects for Engineers and Physicists
Near Earth Objects (NEOs)

Lehrveranstaltung 0000001990 im SS 2020

Basisdaten

LV-Art Vorlesung
Umfang 2 SWS
betreuende Organisation Lehrstuhl für Raumfahrttechnik (Prof. Walter)
Dozent(inn)en Laura Grill
Detlef Koschny
Termine Fr, 12:30–14:00, virtuell
sowie 1 einzelner oder verschobener Termin

Zuordnung zu Modulen

weitere Informationen

Lehrveranstaltungen sind neben Prüfungen Bausteine von Modulen. Beachten Sie daher, dass Sie Informationen zu den Lehrinhalten und insbesondere zu Prüfungs- und Studienleistungen in der Regel nur auf Modulebene erhalten können (siehe Abschnitt "Zuordnung zu Modulen" oben).

ergänzende Hinweise The basic theories, methods and tools for detection, follow-up observations, cataloguing and characterisation of near-Earth objects will be developed. In addition, the methods and technologies for mitigation of danger, findings, contact, diversion and destruction of NEOs will be covered. Furthermore, Engineering data and information sources such as national and international agencies (e.g. DLR, NASA, ESA), institutions such as universities, observatories and amateur groups will be covered. The lecture is held in English and is divided into the following teaching units: 1 GENERAL INTRODUCTION (2 HOURS) 2 FROM OBSERVATIONS TO MEASUREMENTS (2 HOURS) - Which instrumentation is used for observing asteroids – ground-based telescopes, space-based telescopes, radar - Instrumentation: CCD cameras, filters, spectroscopy, delay-doppler radar technique - ‘Groups’ of observations – survey, follow-up, and physical characterization - Example position determination: How to compute the sensitivity of a telescope, sky coverage – physics of the computations (size, distance, optical properties of asteroids + technical properties of telescope and detector => no. of electrons on sensor, Signal-to-Noise ratio) - How to determine the position of an asteroid from the image (existing software – computational background: ‘plate constants’ to correct for image distortions) - Who is doing this today? 3 ORBIT DETERMINATION AND FIRST IMPACT WARNING (4 HOURS) - How to convert the celestial coordinates of the asteroid positions to an orbit (coordinate transformations needed, fit Kepler ellipse to observations as starting point) – mathematical background, simple example - Non-gravitational forces and their effects, physical and mathematical background - Metrics for the impact risk – the Palermo Scale - Definition of ‘keyholes’ during close fly-bys and their importance - The generation of impact warnings – go/no-go point for acquiring more information - Show examples of existing systems of orbit computation centers – NEODyS (Univ. Pisa), Sentry, Horizons (JPL/NASA) 4 ASTEROID PHYSICAL PROPERTIES DETERMINATION (4 HOURS) - Which physical parameters exist and what is their relevance? - How can they be measured (link to section 2, telescopes/radars, spectroscopy) - Spectral classification, polarimetric measurements - Space mission results - What is the possible accuracy for the measurements and their effect on any impact risk assessments - Show examples of existing systems 5 IMPACT EFFECTS AND CONSEQUENCES (2 HOURS) - Physics of atmospheric entry - Atmospheric explosions and their effects, physical background - Cratering effects, physical background - Classification of impact effects (local, regional, global consequences) - Presentation of existing tools and assessment of their accuracy - Link to current activities on crisis and disaster management 6 MITIGATION – AVOIDING AN IMPACT (4 HOURS) - Redoing the impact assessment to generate the ‘final warning’ - Introduction to the currently envisaged political decision process - Link to previous lecture – activities related to crisis and disaster management (evacuation) - Space missions for mitigation – classification, technology readiness - Provide some basic mission analysis knowledge to assess the feasibility of a mitigation mission - ESA’s Don Quijote mission as a study – redo some computations 7 ‘WAR GAME’: WHAT TO DO IN CASE OF AN IMMINENT IMPACT THREAT? (2 HOURS) 8 SUMMARY (2 HOURS)
Links LV-Unterlagen
E-Learning-Kurs (z. B. Moodle)
TUMonline-Eintrag

Gleiche Lehrveranstaltungen (z. B. in anderen Semestern)

SemesterTitelDozent(en)Termine
SS 2024 Near Earth Objects (NEOs) Frühauf, M. Koschny, D. Reiß, P. Fr, 12:30–14:00, 012
SS 2023 Near Earth Objects (NEOs) Frühauf, M. Koschny, D. Reiß, P. Fr, 12:30–14:00, 012
SS 2022 Near-Earth Objects for Engineers and Physicists Frühauf, M. Koschny, D. Fr, 12:30–14:00, MW 2050
SS 2021 Near Earth Objects (NEOs) Frühauf, M. Grill, L. Koschny, D. Fr, 12:30–14:00, virtuell
SS 2019 Near Earth Objects (NEOs) Grill, L. Koschny, D. Fr, 12:30–14:00, MW 2050
SS 2018 Near Earth Objects (NEOs) Fr, 12:30–14:00, MW 2050
SS 2017 Near Earth Objects (NEOs) Fr, 12:30–14:00, MW 0234
Fr, 12:30–14:00, MW 2050
SS 2016 Near Earth Objects (NEOs) Fr, 12:30–14:00, MW 0234
sowie einzelne oder verschobene Termine
SS 2015 Near Earth Objects (NEOs) Fr, 12:15–14:15, MW 0234
sowie einzelne oder verschobene Termine
SS 2014 Near Earth Objects (NEOs) Fr, 12:00–14:00, MW 0234
sowie einzelne oder verschobene Termine
SS 2013 Near Earth Objects (NEOs)
Nach oben