Diese Webseite wird nicht mehr aktualisiert.

Mit 1.10.2022 ist die Fakultät für Physik in der TUM School of Natural Sciences mit der Webseite https://www.nat.tum.de/ aufgegangen. Unter Umstellung der bisherigen Webauftritte finden Sie weitere Informationen.

de | en

Asteroiden auf erdnahen Bahnen (MW1790)
Near Earth Objects (NEOs)

Lehrveranstaltung 0000001990 im SS 2015

Basisdaten

LV-Art Vorlesung
Umfang 2 SWS
betreuende Organisation Lehrstuhl für Raumfahrttechnik (Prof. Walter)
Dozent(inn)en
Termine Fr, 12:15–14:15, MW 0234
sowie 1 einzelner oder verschobener Termin

Zuordnung zu Modulen

weitere Informationen

Lehrveranstaltungen sind neben Prüfungen Bausteine von Modulen. Beachten Sie daher, dass Sie Informationen zu den Lehrinhalten und insbesondere zu Prüfungs- und Studienleistungen in der Regel nur auf Modulebene erhalten können (siehe Abschnitt "Zuordnung zu Modulen" oben).

ergänzende Hinweise Basic theories, methods and tools: Detection, tracking, cataloging and characterization of near earth objects Methods and technologies: Mitigation of danger, findings, contact, diversion, destruction Tools for the simulation and analysis of time, cost and risk in NO project Engineering Data and Information sources: National and International Agencies like DLR, NASA, ESA; Institutions like Universities, Observatories ,Amateur Groups like NEAT. The lecture will be held in English. 1 GENERAL INTRODUCTION (2 HOURS) 2 FROM OBSERVATIONS TO MEASUREMENTS (2 HOURS) - Which instrumentation is used for observing asteroids – ground-based telescopes, space-based telescopes, radar - Instrumentation: CCD cameras, filters, spectroscopy, delay-doppler radar technique - ‘Groups’ of observations – survey, follow-up, and physical characterization - Example position determination: How to compute the sensitivity of a telescope, sky coverage – physics of the computations (size, distance, optical properties of asteroids + technical properties of telescope and detector => no. of electrons on sensor, Signal-to-Noise ratio) - How to determine the position of an asteroid from the image (existing software – computational background: ‘plate constants’ to correct for image distortions) - Who is doing this today? 3 ORBIT DETERMINATION AND FIRST IMPACT WARNING (4 HOURS) - How to convert the celestial coordinates of the asteroid positions to an orbit (coordinate transformations needed, fit Kepler ellipse to observations as starting point) – mathematical background, simple example - Non-gravitational forces and their effects, physical and mathematical background - Metrics for the impact risk – the Palermo Scale - Definition of ‘keyholes’ during close fly-bys and their importance - The generation of impact warnings – go/no-go point for acquiring more information - Show examples of existing systems of orbit computation centers – NEODyS (Univ. Pisa), Sentry, Horizons (JPL/NASA) 4 ASTEROID PHYSICAL PROPERTIES DETERMINATION (4 HOURS) - Which physical parameters exist and what is their relevance? - How can they be measured (link to section 2, telescopes/radars, spectroscopy) - Spectral classification, polarimetric measurements - Space mission results - What is the possible accuracy for the measurements and their effect on any impact risk assessments - Show examples of existing systems 5 IMPACT EFFECTS AND CONSEQUENCES (2 HOURS) - Physics of atmospheric entry - Atmospheric explosions and their effects, physical background - Cratering effects, physical background - Classification of impact effects (local, regional, global consequences) - Presentation of existing tools and assessment of their accuracy - Link to current activities on crisis and disaster management 6 MITIGATION – AVOIDING AN IMPACT (4 HOURS) - Redoing the impact assessment to generate the ‘final warning’ - Introduction to the currently envisaged political decision process - Link to previous lecture – activities related to crisis and disaster management (evacuation) - Space missions for mitigation – classification, technology readiness - Provide some basic mission analysis knowledge to assess the feasibility of a mitigation mission - ESA’s Don Quijote mission as a study – redo some computations 7 ‘WAR GAME’: WHAT TO DO IN CASE OF AN IMMINENT IMPACT THREAT? (2 HOURS) 8 THE NEO DECISION PROCESS AS A SYSTEM (OF SYSTEMS) (2 HOURS) 9 SUMMARY (2 HOURS)
Links LV-Unterlagen
E-Learning-Kurs (z. B. Moodle)
TUMonline-Eintrag

Gleiche Lehrveranstaltungen (z. B. in anderen Semestern)

SemesterTitelDozent(en)Termine
SS 2024 Near Earth Objects (NEOs) Frühauf, M. Koschny, D. Reiß, P. Fr, 12:30–14:00, 012
SS 2023 Near Earth Objects (NEOs) Frühauf, M. Koschny, D. Reiß, P. Fr, 12:30–14:00, 012
SS 2022 Near-Earth Objects for Engineers and Physicists Frühauf, M. Koschny, D. Fr, 12:30–14:00, MW 2050
SS 2021 Near Earth Objects (NEOs) Frühauf, M. Grill, L. Koschny, D. Fr, 12:30–14:00, virtuell
SS 2020 Near Earth Objects (NEOs) Grill, L. Koschny, D. Fr, 12:30–14:00, virtuell
sowie einzelne oder verschobene Termine
SS 2019 Near Earth Objects (NEOs) Grill, L. Koschny, D. Fr, 12:30–14:00, MW 2050
SS 2018 Near Earth Objects (NEOs) Fr, 12:30–14:00, MW 2050
SS 2017 Near Earth Objects (NEOs) Fr, 12:30–14:00, MW 0234
Fr, 12:30–14:00, MW 2050
SS 2016 Near Earth Objects (NEOs) Fr, 12:30–14:00, MW 0234
sowie einzelne oder verschobene Termine
SS 2014 Near Earth Objects (NEOs) Fr, 12:00–14:00, MW 0234
sowie einzelne oder verschobene Termine
SS 2013 Near Earth Objects (NEOs)
Nach oben