Diese Webseite wird nicht mehr aktualisiert.

Mit 1.10.2022 ist die Fakultät für Physik in der TUM School of Natural Sciences mit der Webseite https://www.nat.tum.de/ aufgegangen. Unter Umstellung der bisherigen Webauftritte finden Sie weitere Informationen.

de | en

Smarte Flaschenbürsten

Neutronen machen Strukturveränderungen in molekularen Bürsten sichtbar

2020-10-29 – Nachrichten aus dem Physik-Department

Sie sehen aus wie mikroskopisch kleine Flaschenbürsten: Polymere mit einem Rückgrat und Büscheln von Seitenarmen. Dieses molekulare Design verleiht ihnen ungewöhnliche Fähigkeiten: Sie können beispielsweise Wirkstoffe binden und bei einer Temperaturänderung wieder freisetzen. Mit Hilfe von Neutronenstrahlen ist es nun einem Forschungsteam der Technischen Universität München (TUM) gelungen, die Veränderungen der inneren Struktur, die sich dabei vollzieht, sichtbar zu machen.

Thermoresponsive „molekulare Bürsten“ mit Propylenoxid / Ethylenoxid-Copolymer-Seitenketten in wässriger Lösung.
Thermoresponsive „molekulare Bürsten“ mit Propylenoxid/Ethylenoxid-Copolymer-Seitenketten in wässriger Lösung. – Bild: Reiner Müller / TUM

„Mit klassischen optischen Verfahren lässt sich die Struktur der nur nanometerkleinen Flaschenbürsten-Polymere nicht untersuchen: Man kann zwar sehen, dass eine wässrige Lösung, die diese Polymere enthält, bei einer bestimmten Temperatur trübe wird. Aber warum das so ist und wie sich das Rückgrat und die Seitenarme im Wasser ausstrecken oder zusammenziehen, war bisher ungeklärt“, berichtet Prof. Christine Papadakis.

Dass Wissenschaftlerinnen und Wissenschaftler gerne mehr über das Innenleben der Flaschenbürsten-Polymere wüssten, hat einen einfachen Grund: Die puscheligen Moleküle, die aus verschiedenartigen Polymerketten bestehen und bei einer bestimmten Temperatur schlagartig ihre Wasserlöslichkeit ändern, sind aussichtsreiche Kandidaten für eine Vielzahl von Anwendungen.

Beispielsweise könnten sie als Katalysatoren zur Beschleunigung chemischer Reaktionen dienen, als molekulare Schalter, um winzige Ventile zu öffnen oder zu schließen oder als Träger für medizinische Wirkstoffe – so könnten die molekularen Bürsten Pharmazeutika zu einem Entzündungsherd bringen, und, weil dort die Temperatur erhöht ist, sie direkt am Einsatzort freisetzen.

Die Grundvoraussetzung für eine Nutzung der Bürsten-Moleküle ist allerdings, dass sich ihr Verhalten programmieren lässt: Theoretisch können Chemiker durch die Kombination von wasserlöslichen und wasserunlöslichen Bausteinen genau festlegen, bei welcher Temperatur die Polymere verklumpen und eine Flüssigkeit, in der sie gerade noch gelöst waren, trübe wird.

„In der Praxis muss man aber genau wissen, wie und unter welchen Bedingungen sich die Struktur der Polymere ändert, wenn man smarte Bürsten-Moleküle designen will“, erläutert Papadakis.

Neutronen zeigen das molekulare Innenleben

Dr. Lester Barnsley at the small-angle neutron scattering system KWS-1 (MLZ / FRM II)
Dr. Lester Barnsley, Instrumentwissenschaftler des Forschungszentrums Jülich, an der Kleinwinkelneutronenstreuanlage KWS-1 des Heinz Maier-Leibnitz Zentrums an der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der Technischen Universität München. – Bild: W. Schürmann / TUM

Zusammen mit ihrem Team im Fachgebiet Physik weicher Materie der TU München konnte sie jetzt erstmals die Veränderungen sichtbar machen, die Flaschenbürsten-Polymere mit Armen aus zwei unterschiedlichen Baustein-Typen durchlaufen, wenn die Temperatur den Trübungspunkt erreicht.

Die Wissenschaftlerinnen und Wissenschaftler nutzten dafür Neutronenstrahlung der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) auf dem Campus Garching am Instrument KWS-1, einer speziellen Messanlage für Neutronen-Kleinwinkelstreuung, die vom Forschungszentrum Jülich betrieben wird.

Diese ist für die Untersuchung besonders gut geeignet, weil Neutronen elektrisch neutral sind und daher in die Materie eindringen. Dort werden sie von den Atomkernen gestreut, was zu sehr aussagekräftigen Informationen über die Bürsten-Molekülen führt. In Kombination mit moderner cryo-Elektronemikroskopie liess sich ein tieferes Verständnis für diese Moleküle herausarbeiten.

Wenn Bürsten verklumpen

Die thermoresponsiven Bürsten-Moleküle, die Papadakis‘ Team untersucht hat, wurden von Kolleginnen und Kollegen der National Hellenic Research Foundation in Griechenland beziehungsweise der Technischen Universität Dresden synthetisiert.

Im ersten Schritt wurden die Proben in Wasser gelöst, dann schrittweise bis zum Trübungspunkt erwärmt und mit Neutronen bestrahlt. Aus der gestreuten Strahlung konnten die Forscherinnen und Forscher auf die strukturellen Veränderungen zurückschließen.

Je nach Aufbau der Polymere fand schon vor Erreichen des Trübungspunktes eine Abspaltung von Wasser-Molekülen statt. Am Trübungspunkt selbst kollabierte dann die Molekülstruktur. Übrig blieben wasserunlösliche Polymer-Knäuel, die je nach Restwassergehalt lose oder kompakte Cluster bildeten.

„Die Ergebnisse werden dabei helfen, praxistaugliche Flaschenbürsten-Polymere zu entwickeln“, davon ist die Physikerin überzeugt. „Wenn man genau weiß, wie sich die Polymere am Trübungspunkt verändern, kann man ihren chemischen Aufbau für verschiedene Anwendungen optimieren.“

Veröffentlichungen

A Molecular Brush With Thermoresponsive Poly(2-Ethyl-2-Oxazoline) Side Chains: A Structural Investigation
Jia-Jhen Kang, Kaltrina Shehu, Clemens Sachse, Florian A. Jung, Chia-Hsin Ko, Lester C. Barnsley, Rainer Jordan, Christine M. Papadakis
Thermoresponsive Molecular Brushes with Propylene Oxide/Ethylene Oxide Copolymer Side Chains in Aqueous Solution
Jia-Jhen Kang, Florian A. Jung, Chia-Hsin Ko, Kaltrina Shehu, Lester C. Barnsley, Fabian Kohler, Hendrik Dietz, Junpeng Zhao, Stergios Pispas, and Christine M. Papadakis

Mehr Informationen

Die Arbeit entstand in Kooperation mit dem Lehrstuhl für Biomolekulare Nanotechnologie am Physik-Department der TU München, der Fakultät für Chemie und Lebensmittelchemie der Technischen Universität Dresden sowie dem Theoretical and Physical Chemistry Institute der National Hellenic Research Foundation, Griechenland. Das Projekt wurde gefördert durch die Deutsche Forschungsgemeinschaft.

Kontakt

Prof. Dr. Christine Papadakis
Technische Universität München
James-Franck-Str. 1, 85748 Garching, Germany
Tel.: +49 89 289 12447
Nach oben