Electrons on a rapid journey through a crystal lattice

2015-01-14 – News from Physics Department

How fast do electrons whiz through the atomic layers of a crystal lattice? A team of scientists led by researchers from the Technische Universität München (TUM) joined by colleagues from the Max Planck Institute of Quantum Optics (MPQ), the Ludwig- Maximilians-Universität Munich and the Technical University of Vienna has now investigatigated this fundamental question. The researchers measured the time electrons needed to travel through a film consisting of a few layers a of magnesium atoms.

A laser pulse and an ultraviolet laser pulse impinge on a surface of manganese atoms on top of tungsten
A laser pulse (red) and an ultraviolet laser pulse (violett) impinge on a surface of manganese atoms on top of tungsten. Image: Christian Hackenberger

The time frames, in which electrons travel within atoms, are unfathomably short. For example, electrons excited by light change their quantum-mechanical location within mere attoseconds. An attosecond corresponds to a billionth of a billionth of a second.

But how fast do electrons whiz across distances corresponding to the diameter of individual atomic layers? Such distances are but a few billionths of a metre. An international team of researchers led by Reinhard Kienberger, Professor for Laser and X-Ray Physics at the TUM and Head of a Research Group at the Max Planck Institute of Quantum Optics investigated the travel times of electrons over these extremely short distances.

To do so, the physicists applied a defined number of layers of magnesium atoms on top of a tungsten crystal. The researchers directed two pulses of light at these samples. The first pulse lasted approximately 450 attoseconds, at frequencies within the extreme ultraviolet. This light pulse penetrated the material and released an electron from a magnesium atom in the layer system as well as from an atom in the underlying tungsten crystal. Both the electrons that were set free stemmed from the immediate vicinity of the nucleus.

Once released, the “tungsten electron” and the “magnesium electron” travelled through the crystal to the surface at which point they left the solid body. (electrons from the tungsten crystal managed to penetrate up to four layers of magnesium atoms.) There, the particles were captured by the electric field of the second pulse, an infrared wave train lasting less than five femtoseconds.

Prof. Reihard Kienberger at the attosecond beamline
Prof. Reinhard Kienberger at the attosecond beamline where the experiments have been performed. Photo: Thorsten Naeser / MPQ

As the “tungsten electron” and the “magnesium electron” reached the surface at different times due to different path lengths, they experienced the second pulse of infrared light at different times. That is, they were exposed to different strengths of the oscillating electric field. As a result, both particles were accelerated to varying degrees. From the resulting differences in the energy of the electrons, the researchers were able to determine how long an electron needed to pass through a single layer of atoms. The measurements showed that upon release a “tungsten electron” possesses a speed of about 5000 kilometers per second. When travelling through a layer of magnesium atoms it is delayed by approximately 40 attoseconds, i.e., this is exactly the time required to travel through this layer.

The experiments provide insight into how electrons move within the widely unknown microcosm. Knowing how fast an electron travels from one place to the next is of substantial importance for many applications: “While a large number of electrons are able to cover increasingly large distances in today’s transistors, for example, individual electrons could transmit a signal through nanostructures in future”, explains Prof. Reinhard Kienberger. “As a result, electronic devices like computers could be made to be several times faster and smaller.”

The research was funded by the German Research Council (DFG; via the Cluster of Excellence Munich Center of Advanced Photonics, SFB 51 and SFB 49), the Austrian Science Fonds (FWF), the Max Planck Research School of Advanced Photon Science (IMPRS-APS) an the European Research Council (ERC).

Thorsten Naeser (MAP), Dr. Andreas Battenberg (TUM), Dr. Johannes Wiedersich


Direct observation of electron propagation and dielectric screening on the atomic length scale
S. Neppl, R. Ernstorfer, A.L. Cavalieri, C. Lemell, G. Wachter, E. Magerl, E.M. Bothschafter, M. Jobst, M. Hofstetter, U. Kleineberg, J.V. Barth, D. Menzel, J. Burgdörfer, P. Feulner, F. Krausz and R. Kienberger


Prof. Dr. Reinhard Kienberger
Technische Universität München
und Max-Planck-Institut für Quanten-Optik
James Frank Str.
85748 Garching
Tel.: +49 89 289 12840

Condensed Matter

When atoms interact things can get interesting. Fundamental research on the underlying properties of materials and nanostructures and exploration of the potential they provide for applications.

Nuclei, Particles, Astrophysics

A journey of discovery to understanding our world at the subatomic scale, from the nuclei inside atoms down to the most elementary building blocks of matter. Are you ready for the adventure?


Biological systems, from proteins to living cells and organisms, obey physical principles. Our research groups in biophysics shape one of Germany's largest scientific clusters in this area.