de | en

Quantentechnologien

Menno Poot

Forschungsgebiet

Unsere Arbeitsgruppe beschäftigt sich mit Quantentechnologien. Wir stellen mit modernsten Methoden der Nano-Fertigung Chips her, die es uns erlauben vielfältige Quanteneffekte zu untersuchen. Zum Beispiel erforschen wir nanomechanische Resonatoren bei Temperaturen im Milikelvin-Bereich, wo sie sich in ihrem Quantengrundzustand befinden. Dennoch gelingt es mit extrem empfindlichen optomechanischen Methoden, ihre winzigen Nullpunktsschwingungen zu messen.
Ein weiteres interessantes Gebiet ist die integrierte Quantenoptik. Wir entwerfen, fertigen und vermessen photonische Chips, die einzelne Photonen erzeugen, manipulieren und nachweisen.

Adresse/Kontakt

James-Franck-Str. 1/I
85748 Garching b. München
office.eqt@ph.tum.de
+49 89 289 12358
Fax: +49 89 289 12536

Mitarbeiterinnen und Mitarbeiter der Arbeitsgruppe

Professorinnen und Professoren

Mitarbeiterinnen und Mitarbeiter

Lehrangebot der Arbeitsgruppe

Lehrveranstaltungen mit Beteiligung der Arbeitsgruppe

Ausgeschriebene Angebote für Abschlussarbeiten an der Arbeitsgruppe

High frequency optomechanical devices for quantum optomechanics

The smaller a device is, the higher its resonance frequency becomes. For our future quantum optomechanics experiments we will be working with mechanical resonators that operate at GHz frequencies and simultaneously couple strongly to light. Using mechanical and optical band structure calculations, you will design, make, and measure phononic and photonic cavities. The project involves nanofabrication in the cleanroom, as well as using the extreme sensitivity offered by on-chip optomechanics. We are aiming for devices made from silicon nitride, which has a lot of tensile stress in it. For micromechanical structures this material gives much better mechanical properties compared to, for example, silicon devices. An important aspect of the project is to understand if this is also true for the high frequency devices.

geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Menno Poot
Modelling single photon sources for optical quantum circuits

For quantum technology it is very important to have sources for single photons. One of the techniques that can be used to create these, is called spontaneous parametric down conversion, or SPDC for short. Here photons with a high frequency can split into two daughter photons with about half the frequency. An important point in this technique is so-called phase matching: the low and high frequency photons should travel at the same speed through the nonlinear material. This is often achieved by using special crystals that have to be oriented carefully. For applications we want to integrated these sources on photonic chips. In this project we will expore the phase matching in waveguides using photonic simulations of waveguides.

geeignet als
  • Bachelorarbeit Physik
Themensteller(in): Menno Poot
Strong electrostatic effects in optomechanical devices

Optomechanics provides extremely sensitive methods to measure the displacement of mechanical resonators. However, the forces are much smaller in optomechanics compared to those in nanoelectromechanical systems (NEMS). The goal of the project is to make, and measure opto-electromechanical devices which have strong electrostatic interactions. This includes the electrostatic spring effect where the resonance frequency depends strongly on the applied voltage. The next step is trying to measure the potential by measuring the ringdown of different mechanical modes. The devices will be made using advanced nanofabrication techniques such as electron beam lithography and reactive ion etching.

geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Menno Poot
Synchronization and nonlinear dynamics of nanomechanical oscillators

Synchrozation is a universal phenomenon that is knows since they days of Huygens. When two or more oscillators with slightly different frequencies are coupled, they will start to move in phase. We can create small mechanical devices using advanced nanofabrication techniques here on campus. By sending light of the right wavelength, they start to oscillate, and when increasing the power the optomechanical coupling synchronizes them. The goal of this project is to synchronize devices made from silicon nitride, which is a special material with a lot of stress in it, and to increase the number of synchronized oscillators. The larger the system becomes, the richer the nonlinear dynamics will become. You will first make the devices in the cleanroom, measure them, and analyze the data.

geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Menno Poot

Abgeschlossene und laufende Abschlussarbeiten an der Arbeitsgruppe

Set-up and Analysis of a Two-Dimensional Translation Stage for Integrated Optics Experiments
Abschlussarbeit im Bachelorstudiengang Physik
Themensteller(in): Menno Poot
Designing and modeling high frequency optomechanical devices
Abschlussarbeit im Bachelorstudiengang Physik
Themensteller(in): Menno Poot
Nach oben