This website is no longer updated.

As of 1.10.2022, the Faculty of Physics has been merged into the TUM School of Natural Sciences with the website https://www.nat.tum.de/. For more information read Conversion of Websites.

de | en

Tracking and Detection in Computer Vision (IN2210)

Course 0000002026 in WS 2019/20

General Data

Course Type lecture with integrated exercises
Semester Weekly Hours 6 SWS
Organisational Unit Informatics 16 - Chair of Computer Aided Medical Procedures (Prof. Navab)
Lecturers Linda Mai Bui
Slobodan Ilic
Dates Mon, 14:00–16:00, MI 00.13.009A
Thu, 14:00–16:00, MI 01.05.012
Thu, 14:00–16:00, MI 00.13.009A
Thu, 14:00–16:00, MI 03.11.018
Thu, 14:00–16:00, MI 03.09.012
and 2 singular or moved dates

Assignment to Modules

Further Information

Courses are together with exams the building blocks for modules. Please keep in mind that information on the contents, learning outcomes and, especially examination conditions are given on the module level only – see section "Assignment to Modules" above.

additional remarks 1. Einführung zu tracking, detection und recognition in der Computer Vision 2. Grundlegende Konzepte 2.1 Gradienten. Gausscher Weichzeichner. Faltung. Kanten. 2.2 Kameramodelle und Parametrisierung von Kamerabewegungen 3. Image features und flows 3.1 Feature detection: corners, edges, regions detectors(Harris-Affine&Hessian Affine, MSER, IBR & EBR, Silent regions) 3.2 Feature descriptors: SIFT, SURF 3.3 Lucas-Kanade optical flow und Lucas- Kandade. 4. Matching 4.1 Descriptor based matching 4.2 Key-point recognition(Randomized trees und Ferns) 4.3 Template matching (Lucas-Kanade template matching, Jurie-Dhome algorithm, ESM) 4.4 Matching und pose estimation (Leopard, Panther and Gepard) 5. Tracking 5.1 Camera/object tracking techniques. (Feature based. Model based) 5.2 KLT tracker 5.3 Kalman filters und Erweiterungen 5.4 Particle filters und Condensation algorithm 6. Detection 6.1 Haar features und integral images 6.2 Ada-Boost Algorithmus zur Klassifizierung 6.3 Viola-Jones face detection 7. Object recognition 7.1 Bag of words object description 7.2 Video Google 7.3 Vocabulary trees
Links Course documents
E-Learning course (e. g. Moodle)
TUMonline entry

Equivalent Courses (e. g. in other semesters)

SemesterTitleLecturersDates
WS 2018/9 Tracking and Detection in Computer Vision (IN2210) Bui, L. Ilic, S. Mon, 14:00–16:00, MI 00.13.009A
Thu, 14:00–16:00, MI 00.13.009A
and singular or moved dates
WS 2017/8 Tracking and Detection in Computer Vision (IN2210) Ilic, S. Mon, 14:00–16:00, MI 00.13.009A
Thu, 14:00–16:00, MI 00.13.009A
and singular or moved dates
WS 2016/7 Tracking and Detection in Computer Vision (IN2210) Ilic, S. Thu, 12:00–14:00, MI 00.13.009A
Mon, 12:00–13:45, MI 00.13.009A
Top of page