Prof. Dr. rer. nat. Karsten Reuter

Photo von Prof. Dr. rer. nat. Karsten Reuter.
Telefon
+49 89 289-13616
Raum
5403.05.311K
E-Mail
karsten.reuter@ch.tum.de
Links
Homepage
Visitenkarte in TUMonline
Arbeitsgruppe
Theoretische Chemie (Fakultät für Chemie)
Funktionen
  • Professor mit Zweitmitgliedschaft am Physik-Department
  • Lehrstuhl für Theoretische Chemie (Fakultät für Chemie)
Sprechstunde
nach Vereinbarung

Lehrveranstaltungen und Termine

Titel und Modulzuordnung
ArtSWSDozent(en)Termine
Advanced Electronic Structure
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
VU 3 Andersen, M. Panosetti, C. Reuter, K.
English title will be supplied
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
VO 3 Oberhofer, H. Reuter, K.
Mathematische Methoden der Chemie 1 (LV0006)
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
VO 3 Reuter, K. Scheurer, C.
Quantum Chemistry: Electronic Structure
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
VO 2 Oberhofer, H. Reuter, K.
Mathematische Methoden der Chemie 1, Übung (LV0007)
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
UE 1 Reuter, K. Scheurer, C.
Mathematische Methoden der Chemie 1, Zusatzübung
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
UE 1 Reuter, K. Scheurer, C.
Quantum Chemistry: Electronic Structure, Exercises
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
UE 1 Oberhofer, H. Reuter, K.
---
Zuordnung zu Modulen:
SE 2 Reuter, K.
Computational Chemistry (Praktikum) (LV2147)
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
PR 4 Reuter, K. Scheurer, C.
Computer Course in Theoretical Chemistry
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
PR 5 Kaila, V. Reuter, K. Scheurer, C.
English title will be supplied
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
KO 2 Domcke, W. Gasteiger, H. Günther, S. Heiz, U. Kaila, V. … (insgesamt 6)
Laboratory Course/Seminar in Measurement Technology, Data Interpretation and Simulation
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
PR 5 Esch, F. Gasteiger, H. Günther, S. Heiz, U. Reuter, K. … (insgesamt 6)
Pracical Course/Seminar in Programming and Numerical Methods
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
PR 5 Reuter, K. Scheurer, C.
Research Laboratory Course in Physical Chemistry I
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
PR 5 Esch, F. Gasteiger, H. Günther, S. Heiz, U. Kaila, V. … (insgesamt 8)
Research Laboratory Course in Physical Chemistry II
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
PR 5 Esch, F. Gasteiger, H. Günther, S. Heiz, U. Kaila, V. … (insgesamt 8)
Research Proposal Writing and Oral Defense Training (PRODEF) (LV0873)
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
SE 2 Fischer, R. Kieslich, G. Reuter, K.

Ausgeschriebene Angebote für Abschlussarbeiten

Approximations of the many-electron wavefunction by a reduced density matrix approach
The electronic many-particle wave function is generally described by a linear combination of Slater determinants. Since the number of determinants is described by a combinatorial equation and grows exponentially with the number of single-particle functions, the full configuration interaction wave function where the complete Hilbert space of many-particle functions is taken into account are possible only for the simplest models. A more efficient representation of the correlated wave function which contains all relevant information about the electronic structure is provided by the 2-particle reduced density matrix. This object occurs already in Hartree-Fock theory as the direct product of the 1-particle density matrix and scales only with the fourth power in the number of basis functions. Hence efficient techniques to compute accurate 2-particle reduced density matrices are of great interest in electronic structure theory and the MSc project offers a chance to make a contribution to a fundamental problem of theoretical physics. In this project the mathematically inclined student will explore different approaches and algorithms to directly compute the 2-particle reduced density matrix of real molecular systems and possibly solids, using and extending existing programs and algorithms. This will include programming work on numerical algorithms as well as fundamental research on the underlying mathematical problem. The successful candidate should have a strong interest in numerical problems, programming skills in Python and ideally basic knowledge of a compiled programming language (C, Fortran).
geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Karsten Reuter
Development of a simulation protocol for ab initio molecular dynamics simulations of solid-water interfaces

Solid-water interfaces are of outstanding importance for electrochemistry and catalysis. With modern algorithms based on density functional theory the electronic structure of water and solids can be analyzed in great detail. A fundamental challenge is the description of the electrochemical double layer which effectively forms a capacitor subject to competing chemical and physical processes. Electrode water interfaces, for example, are often subject to faradaic and non-faradaic charge transfer processes which are difficult to separate in experiments. The goal of the MSc project is to develop a simulation protocol using ab initio molecular dynamics (MD) to model the behaviour of liquid water at transition metal interfaces, to identify structural and electronic properties at the interface and associated with the electric double layer. In the MSc project problems such as the construction of atomistic models of the liquid phase will be addressed along with a statistical description of the fluctuating behaviour of the fluid.  Electronic properties including work functions, electronic band structure, dipole effects, charge accumulation and capacitance effects due to interactions at the solid-liquid interface will be analyzed and compared to more  approximate models. Simulations will be carried out with ab initio MD simulation software such as CP2K and FHI-AIMS.

geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Karsten Reuter

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.

Biophysik

Biologische Systeme, vom Protein bis hin zu lebenden Zellen und deren Verbänden, gehorchen physikalischen Prinzipien. Unser Forschungsbereich Biophysik ist deutschlandweit einer der größten Zusammenschlüsse in diesem Bereich.