Ein Tunnel im Kopf

Interne Kopplung der Ohren ermöglicht Tieren das Richtungshören

2016-02-18 – News from the Physics Department

Menschen, wie fast alle auf dem Land lebenden Wirbeltiere, nutzen den Zeitunterschied, mit dem ein Schallsignal an beiden Ohren ankommt, zur Richtungsbestimmung. Bei Fröschen, Echsen und Vögeln ist der Ohrabstand hierfür zu gering. Sie besitzen jedoch einen Verbindungsgang zwischen beiden Trommelfellen, in dem sich innere und äußere Schallwellen überlagern. Mit einem universellen mathematischen Modell zeigen Forscher des Physik-Departments der Technischen Universität München (TUM) zusammen mit experimentellen Kollegen im Ausland nun erstmals, wie in diesem „inneren Ohr“ neue Signale entstehen, die die Tiere zur Ortung nutzen.

Ein luftgefüllter Kanal verbindet die Ohren der Eidechse im Inneren und ermöglicht ihr das Richtungshören
Ein luftgefüllter Kanal verbindet die Ohren der Eidechse im Inneren und ermöglicht ihr das Richtungshören – Photo: Frieder Mugele, Universität Twente

Sei es eine Bedrohung, die sich anschleicht oder eine Beute, die es im Dunkeln zu finden gilt – die genaue Position einer Geräuschquelle bestimmen zu können, ist im Tierreich von großer Bedeutung. Fast alle Säugetiere, darunter auch der Mensch, lokalisieren eine Geräuschquelle horizontal mit Hilfe der zeitlichen Verzögerung mit der das Schallsignal an beiden Ohren ankommt. Aus dem Zeitunterschied berechnet das Gehirn die Richtung, aus der das Geräusch kam.

Frösche, viele Reptilien und auch Vögel haben diese Möglichkeit nicht, da ihr Ohrabstand oft nur wenige Zentimeter beträgt. Der Zeitunterschied ist daher so gering, dass das Gehirn ihn nicht mehr verarbeiten kann. Um diesen Nachteil auszugleichen, haben diese Tiere ein einfaches und zugleich sehr effizientes System entwickelt: Ein luftgefüllter Hohlraum verbindet die Trommelfelle beider Ohren.

Dieser quer durch den Schädel hindurch verlaufende Hohlraum sorgt für eine Kopplung der beiden Trommelfelle. Die Wissenschaftler sprechen hierbei von „intern gekoppelten Ohren“ (englisch „internally coupled ears“, ICE). Dieser „Tunnel im Kopf“ wird gut sichtbar, wenn man beispielsweise einem Gecko in eines seiner Ohren hineinleuchtet: Der Lichtstrahl tritt dann aus dem anderen Ohr wieder aus.

Anders als bei uns Menschen nehmen die Tiere damit nicht nur die von außen auftreffenden Signale wahr, sondern auch eine Überlagerung der äußeren Schallwellen mit jenen, die im Inneren des Verbindungsganges durch die Kopplung mit der anderen Seite entstehen. Zwar haben Wissenschaftler durch Experimente herausgefunden, dass die Tiere dieses resultierende Signal zur Richtungsbestimmung nutzen. Was jedoch in den gekoppelten Ohren genau vor sich geht, blieb bislang ein Rätsel.

Ein Modell für 15.000 Arten

Nun ist es Wissenschaftlern um Leo van Hemmen, Professor für Theoretische Biophysik an der Technischen Universität München (TUM), erstmals gelungen, ein universell anwendbares mathematisches Modell zu entwickeln, das genau beschreibt, wie sich die Schallwellen in intern gekoppelten Ohren ausbreiten und welche Hinweise auf die Richtung des Signals dabei entstehen.

„Unser Modell lässt sich auf alle Tiere mit diesem Hörsystem anwenden, auch wenn die Hohlräume zwischen den Trommelfellen bei den unterschiedlichen Spezies sehr verschieden aussehen“, erklärt van Hemmen. „Hierdurch verstehen wir nun, was genau im Inneren der Ohren dieser Tiere vor sich geht, und können Experimente bei ganz unterschiedlichen Tierarten erklären und vorhersagen.“ Insgesamt besitzen mehr als 15.000 Arten intern gekoppelte Ohren – das ist mehr als die Hälfte aller landlebenden Wirbeltiere.

Zusammenspiel von externen und internen Signalen

Mit Hilfe ihres Modells fanden van Hemmen und sein Team heraus, dass die Tiere sogar zwei verschiedene Methoden zum Hören mit intern gekoppelten Ohren entwickelt haben. Sie treten in unterschiedlichen Frequenzbereichen auf und ergänzen sich gegenseitig.

Bei Tönen mit einer Frequenz unterhalb der Grundfrequenz des Trommelfells wird der Zeitunterschied, der durch die Überlagerung der äußeren und der inneren Signale entsteht, bis zu fünffach verstärkt. Das reicht aus, um das Geräusch orten zu können.

Bei höheren Frequenzen kann die Zeitdifferenz nicht mehr genutzt werden. Hier kommt eine andere Eigenschaft des Signals zum Tragen: Der Unterschied in der Amplitude, also des Lautstärkepegels, mit dem das Signal an beiden Ohren wahrgenommen wird. „Diese Amplitudendifferenz entsteht allein durch die Kopplung der beiden Ohren“, erklärt van Hemmen. „Das war ein überraschendes Ergebnis.“

Die neuen Erkenntnisse über den Mechanismus und vor allem die Vorteile des Hörens mit intern gekoppelten Ohren sind auch für die Industrie interessant. So könnten vielleicht einmal Roboter mit solch einem Hörsystem ausgestattet werden. „Ich kann mir eine Anwendung in der Robotik gut vorstellen, da diese Art der Verstärkung keine Energie kostet“, meint van Hemmen. In Zukunft wollen die Wissenschaftler um van Hemmen ihr Modell zusammen mit experimentell arbeitenden Kollegen weiter verfeinern.

Am Forschungsprojekt waren beteiligt: Lehrstuhl für Theoretische Biophysik (T35), Physik-Department der TU München, Institut für Neurowissenschaften und Medizin, Forschungszentrum Jülich, Center for Sound Communication, Syddansk Universitet (Odense, Dänemark) und Kirksville College of Osteopathic Medicine, A.T. Still University (Kirksville, Missouri, USA).

Redaktion:
Dr. Andreas Battenberg, Dr. Johannes Wiedersich

Veröffentlichung

How Internally Coupled Ears Generate Temporal and Amplitude Cues for Sound Localization
A. P. Vedurmudi, J. Goulet, J. Christensen-Dalsgaard, B. A. Young, R. Williams, and J. L. van Hemmen

Kontakt

Prof. Dr. J. L. van Hemmen
Lehrstuhl für Theoretische Biophysik
Technische Universität München
James-Franck-Str. 1
85748 Garching
Tel.: +49 89 289-12362
E-Mail: lvh@tum.de

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.

Biophysik

Biologische Systeme, vom Protein bis hin zu lebenden Zellen und deren Verbänden, gehorchen physikalischen Prinzipien. Unser Forschungsbereich Biophysik ist deutschlandweit einer der größten Zusammenschlüsse in diesem Bereich.