Den Verschleiß von Solarzellen erstmals live im Blick

Röntgenuntersuchung zeigt Strukturveränderungen in Solarzellen auf Polymerbasis

Nachrichten aus dem Physik-Department – 2013-12-09

Schematische Darstellung der Struktur der aktiven Schicht der Polymer-Solarzelle. Die orangen Bereiche repräsentieren die aktiven Domänen, an denen Licht in Ladungsträger umgewandelt wird. Illustration: TUM
Schematische Darstellung des Versuchsaufbaus. Die Solarzelle (Mitte) wird mit einem Solarsimulator (unten) beleuchtet, gleichzeitig werden die elektrischen Eigenschaften im Verlauf der Untersuchung aufgezeichnet. Der Röntgenstrahl (rot) erzeugt im Detektor (rechts) ein charakteristisches Streubild, aus dem sich die Struktur der aktiven Schicht bestimmen lässt. Illustration: TUM
Die untersuchte Solarzelle hat eine Kantenlänge von zehn Millimetern. Foto: TUM

Forscherinnen und Forscher des Physik-Departments der TUM haben mit Hilfe von DESYs Röntgenlichtquelle PETRA III in Hamburg erstmals live dem Verschleißen organischer Solarzellen zugesehen. Die Untersuchung könnte neue Ansatzpunkte liefern, um der vielversprechenden Solarzellenart eine größere Stabilität zu verleihen. Das Team um Prof. Peter Müller-Buschbaum stellt seine Beobachtungen im aktuellen Heft des Fachjournals “Advanced Materials” (Nr. 46, 10. Dezember) vor.

Sogenannte organische Solarzellen, insbesondere auf Polymerbasis, sind nicht nur kostengünstig und großflächig herstellbar, sondern erschließen dank ihrer Biegsamkeit auch Anwendungsgebiete, die bisweilen für die Photovoltaik unzugänglich sind. Außerdem können sie eine für Solarzellen große Effizienz (Wirkungsgrad) von mittlerweile mehr als zehn Prozent bei der Umwandlung von Licht in Strom erreichen und damit einen wichtigen Anteil zur Energieversorgung aus erneuerbaren Quellen liefern. Allerdings besitzen sie eine kürzere Lebensdauer als herkömmliche Siliziumzellen, und ihre Effizienz lässt noch schnell nach.

An der Messstation P03 an DESYs Röntgenquelle PETRA III haben die Wissenschaftler den Verschleiß organischer Solarzellen nun erstmals live im Betrieb beobachtet. Dazu beleuchteten sie eine Polymer-Solarzelle mit einem Solarsimulator, der Licht mit dem Spektrum und der Intensität der Sonneneinstrahlung erzeugt, und zeichneten die elektrischen Eigenschaften der Zelle auf. Im Abstand von einigen Minuten bis zu einer Stunde durchleuchteten die Forscher die Zelle zudem mit dem scharf fokussierten Röntgenstrahl von PETRA III. Während der siebenstündigen Untersuchung sank die Effizienz der Solarzelle um rund ein Viertel. Parallel dazu konnten die Forscher mit dem Röntgenlicht Veränderungen an der inneren Struktur der aktiven Schicht beobachten, die das Herzstück organischer Solarzellen darstellt.

Der elektrische Strom wird darin an so genannten aktiven Domänen erzeugt, wo Licht absorbiert wird und elektrische Ladungsträger freigesetzt werden. Diese Domänen besaßen zu Beginn der Messung einen mittleren Durchmesser von knapp 70 Nanometern (millionstel Millimetern), der während der Untersuchung um etwa 17 Prozent auf rund 80 Nanometer anwuchs. Gleichzeitig stieg auch der mittlere Abstand der aktiven Domänen um 19 Prozent von 310 auf 370 Nanometer an, wie die Röntgenmessungen zeigten.

“Dies legt nahe, dass während des Betriebs kleine Domänen zugunsten größerer unwiederbringlich verschwinden”, erläutert Erstautor Christoph Schaffer, Doktorand aus der Arbeitsgruppe von Müller-Buschbaum. “Zwar wachsen die Domänen dadurch, jedoch entfernen sie sich auch voneinander, wodurch sich unter dem Strich ihre Gesamtfläche verringert. Insgesamt lässt sich dadurch exakt der beobachtete Rückgang des Stromertrages erklären.“

„Die Untersuchung erklärt erstmals den Verschleißmechanismus, das ist ein erster Schritt“, erläutert Koautor Dr. Stephan Roth, verantwortlicher DESY-Wissenschaftler für die Messstation P03. „Der nächste Schritt ist, dass man versucht, das Wachstum etwa durch den Zusatz geeigneter Substanzen gezielt zu hemmen oder zu steuern. So ist es beispielsweise denkbar, die innere Struktur von Polymer-Solarzellen bei der Produktion so zu gestalten, dass sich die aktiven Bereiche während der ersten Betriebsstunden gerade in eine optimale Struktur entwickeln, statt aus ihr herauszuwachsen“, erklärt Müller-Buschbaum. „Solche Maßnahmen können genau bewirken, dass industriell produzierte Zellen schließlich auch bei längerem Betrieb über der für Polymer-Solarzellen wirtschaftlich entscheidenden Effizienzschwelle liegen”, betont Roth.

Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.

Redaktion
Thomas Zoufal, DESY Dr. Johannes Wiedersich

Veröffentlichung

A Direct Evidence of Morphological Degradation on a Nanometer Scale in Polymer Solar Cells

Christoph J. Schaffer, Claudia M. Palumbiny, Martin A. Niedermeier, Christian Jendrzejewski, Gonzalo Santoro, Stephan V. Roth, Peter Müller-Buschbaum

Advanced Materials, Vol. 25, Nr. 46, S. 6760-6764, 10. Dezember 2013; DOI: 10.1002/adma.201302854

Kontakt

Prof. Peter Müller-Buschbaum

Technische Universität München Physik-Department Lehrstuhl für funktionelle Materialien James-Franck-Str. 1 85748 Garching Tel: +49 89 289-12451 muellerb@ph.tum.de http://www.functmat.ph.tum.de/index.php?id=5
Dr. Stephan Roth
DESY Tel.: +49 40 8998-2934 stephan.roth@desy.de

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.

Biophysik

Biologische Systeme, vom Protein bis hin zu lebenden Zellen und deren Verbänden, gehorchen physikalischen Prinzipien. Unser Forschungsbereich Biophysik ist deutschlandweit einer der größten Zusammenschlüsse in diesem Bereich.