Quantencomputer aus Kohlenstoff-Nanoröhren

Nachrichten aus dem Physik-Department - 2013-03-21

Wie eine Gitarrensaite können Nanoroehrchen (schwarz) eingespannt und zu Schwingungen angeregt werden. Ein elektrisches Feld (Elektroden: blau) sorgt dafür, das nur zwei der vielen möglichen Zustände angesteuert werden. (Bild: M.J. Hartmann, TUM)

Kohlenstoff-Nanoröhren eignen sich als Bausteine für Quantencomputer. Eine Studie von Physikern der Technischen Universität München (TUM) belegt, dass Nanoröhren Information in Form mechanischer Schwingungen speichern können. Bisher experimentierten Forscher vor allem mit elektrisch geladenen Teilchen. Für nanomechanische Bausteine spricht, dass sie ungeladen sind und daher wesentlich unempfindlicher gegenüber elektrischen Störungen wären.

Computer, die quantenmechanische Phänomene geschickt nutzen, könnten wesentlich leistungsfähiger sein als klassische, digital arbeitende Rechner. Wissenschaftler auf der ganzen Welt erforschen die Grundlagen dazu. Ein häufig genutztes System sind elektrisch geladene Teilchen, die in einer „elektromagnetischen Falle“ festgehalten werden. Ein Nachteil dieser Systeme ist, dass sie sehr empfindlich auf elektromagnetische Störungen reagieren und daher aufwändig abgeschirmt werden müssen. Physiker der TU München haben nun einen Weg gefunden, wie Information auch in mechanischen Schwingungen gespeichert und quantenmechanisch verarbeitet werden kann.

Eine Nano-Gitarre

Wird ein Kohlenstoff-Nanoröhrchen an beiden Enden fest eingespannt und zu Schwingungen angeregt wie eine Gitarrensaite, schwingt es erstaunlich lange. „Man würde erwarten, dass ein solches System sehr stark gedämpft ist und die Schwingung schnell abklingt“, sagt Simon Rips Erstautor der Arbeit. „Tatsächlich aber schwingt die Saite über eine Million Mal. Die Information bleibt damit bis zu einer Sekunde erhalten. Das ist lange genug, um damit arbeiten zu können.“

Da eine solche Saite zwischen vielen physikalisch gleichwertigen Zuständen hin und her schwingt, griffen die Physiker zu einem Trick: Ein elektrisches Feld in der Nähe des Nanoröhrchens sorgt dafür, dass nur zwei dieser Zustände angesteuert werden. Die Informationen können dann optoelektronisch geschrieben und gelesen werden. „Unser Konzept basiert auf verfügbarer Technik“, sagt Michael Hartmann, Leiter der Emmy-Noether-Forschungsgruppe Quantenoptik und Quantendynamik an der TU München. „Es könnte uns der Realisierung eines Quantencomputers wieder ein Stück näher bringen“.

Die Forschungsarbeiten wurden unterstützt aus Mitteln der Deutschen Forschungsgemeinschaft (DFG) im Rahmen des Emmy-Noether-Programms und des SFB 631.

Redaktion: Dr. Andreas Battenberg, battenberg@zv.tum.de

Publikation

Quantum Information Processing with Nanomechanical Qubits

Simon Rips and Michael J. Hartmann

Phys. Rev. Lett. 110, 120503 (2013)

Kontakt

Dr. Michael J. Hartmann

Technische Universität München

Physik-Department, Emmy Noether research group

“Quantum Optics and Quantum Dynamics” (T 34)

85747 Garching, Germany

Tel.: +49 89 289 12884

E-Mail: mh@tum.de

Webseite der Arbeitsgruppe Quantum Optics and Quantum Dynamics

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.

Biophysik

Biologische Systeme, vom Protein bis hin zu lebenden Zellen und deren Verbänden, gehorchen physikalischen Prinzipien. Unser Forschungsbereich Biophysik ist deutschlandweit einer der größten Zusammenschlüsse in diesem Bereich.