de | en

Theoretical Elementary Particle Physics

Prof. Martin Beneke

Research Field

Our research is in theoretical particle physics. We are interested in high-energy collider phenomenology, perturbative loop calculations, searches for physics beyond the Standard Model and the phenomenology of the Standard Model, the physics of heavy quarks (bottom, top), CP violation, strong interaction physics and some aspects of cosmology/dark matter.

Address/Contact

James-Franck-Str. 1/I
85748 Garching b. München
+49 89 289 12374
Fax: +49 89 289 14655

Members of the Research Group

Professor

Office

Scientists

Other Staff

Teaching

Course with Participations of Group Members

Titel und Modulzuordnung
ArtSWSDozent(en)Termine
Computational Physics 2: Simulation of Classical and Quantum Mechanical Systems
Zuordnung zu Modulen:
VO 2 Recksiegel, S. Di, 14:00–16:00, PH HS3
Einführung in die Flavourphysik
Zuordnung zu Modulen:
VO 2 van Dyk, D.
Mitwirkende: Greenwald, D.
Fr, 14:00–16:00, PH 3344
Kern-, Teilchen- und Astrophysik 2
Zuordnung zu Modulen:
VO 4 Garny, M. Paul, S. Fr, 10:00–11:30, PH HS2
Mi, 08:30–10:00, PH HS2
Do, 14:00–16:00, PH HS2
Fr, 12:00–14:00, PH HS2
Di, 14:00–16:00, PH HS2
Quantum Field Theory in Curved Space-Time
Zuordnung zu Modulen:
VO 4 Beneke, M. Di, 08:00–10:00, PH 3344
Mi, 12:00–14:00, PH 3344
Theoretische Physik 1 (Mechanik)
Zuordnung zu Modulen:
VO 4 Beneke, M. Mo, 10:00–12:00, PH HS1
Do, 12:00–14:00, PH HS1
sowie einzelne oder verschobene Termine
Ausgewählte Themen der Flavourphysik
Zuordnung zu Modulen:
HS 2 Paul, S. van Dyk, D.
Mitwirkende: Greenwald, D.
Mi, 12:00–14:00, PH 3268
Parallelisierung von physikalischen Rechnungen auf GPUs mit CUDA
Zuordnung zu Modulen:
PS 2 Recksiegel, S. Do, 16:00–18:00, PH 1161
sowie einzelne oder verschobene Termine
Exercise to Computational Physics 2: Simulation of Classical and Quantum Mechanical Systems
Zuordnung zu Modulen:
UE 2 Recksiegel, S. Termine in Gruppen
Exercise to Quantum Field Theory in Curved Space-Time
Zuordnung zu Modulen:
UE 2 Termine in Gruppen
Offenes Tutorium zu Theoretische Physik 1 (Mechanik)
Zuordnung zu Modulen:
UE 2 Böer, P. Hetterich, D.
Leitung/Koordination: Beneke, M.
Mi, 10:00–12:00, MW 1050
sowie einzelne oder verschobene Termine
Übung zu Einführung in die Flavourphysik
Zuordnung zu Modulen:
UE 2 Greenwald, D. van Dyk, D. Termine in Gruppen
Übung zu Theoretische Physik 1 (Mechanik)
Zuordnung zu Modulen:
UE 2 Böer, P. Hetterich, D.
Leitung/Koordination: Beneke, M.
Termine in Gruppen
Zusatzübung zu Theoretische Physik 1 (Mechanik) für Lehramtstudierende
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
UE 2 Drescher, M.
Leitung/Koordination: Beneke, M.
Di, 12:00–14:00, MI 02.08.020
Masterkolloquium Theorie
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
KO 2 Beneke, M. Ibarra, A. Weiler, A. Fr, 10:00–12:00, PH 3343
Mentorenprogramm im Bachelorstudiengang Physik (Professor[inn]en A–J)
Zuordnung zu Modulen:
KO 0.2 Auwärter, W. Back, C. Bandarenka, A. Barth, J. Bausch, A. … (insgesamt 22)
Leitung/Koordination: Höffer von Loewenfeld, P.
Oberseminar zu Präzisionsrechnungen und effektive Feldtheorie in der Hochenergiephysik
Zuordnung zu Modulen:
SE 2 Beneke, M.
Mitwirkende: Garny, M.
Di, 16:00–18:00, PH 3343
Repetitorium zu Ausgewählte Themen der Flavourphysik
Zuordnung zu Modulen:
RE 2
Leitung/Koordination: van Dyk, D.
Seminar über Theoretische Elementarteilchenphysik
Zuordnung zu Modulen:
SE 2 Beneke, M. Garbrecht, B. Ibarra, A. Recksiegel, S. Weiler, A. Do, 14:00–16:00, PH 3344
Do, 14:00–16:00, PH HS3
sowie einzelne oder verschobene Termine
Theoretische Arbeiten zur Teilchenphysik im arXiv der vergangenen Woche
Zuordnung zu Modulen:
SE 2 Beneke, M.
Mitwirkende: Garny, M.
Mo, 12:00–14:00, PH 3344
Tutorenseminar zu Theoretische Physik 1 (Mechanik)
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
SE 2 Beneke, M.
Mitwirkende: Böer, P.
Mi, 16:00–18:00, PH-Cont. C.3201
sowie einzelne oder verschobene Termine

Offers for Theses in the Group

Fuzzy Dark Matter: Dark Matter with Quantum Properties

In this work a conceptionally simple model for the so-called dark matter
will be studied (``fuzzy dark matter''). Fuzzy dark matter possesses
interesting properties and is subject of current research. The model consists
of a scalar field with extremely small mass, such that the de Broglie
wavelength of fuzzy dark matter has a macroscopic size, comparable with
galactic scales. This leads to a flattening of the density profile close to
the galactic centre, in agreement with observations for numerous types of
galaxies. In this project the theoretical foundations of the model are
worked out, and the density profile in a simple setup is determined. Finally,
further potentially observable properties of fuzzy dark matter will be studied.

suitable as
  • Bachelor’s Thesis Physics
Supervisor: Martin Beneke
Partial-wave unitarity and the Dark Matter Sommerfeld effect

In many dark matter models with a heavy dark matter particle and a light
mediator, the so-called Sommerfeld enhancement plays an important role. In
some cases, this non-relativistic effect can modify annihilation cross-
sections by orders of magnitude. Furthermore, zero-energy resonances
associated with bound states are observed for special values of the dark
matter mass. In the vicinity of these resonances, partial-wave unitarity
fails and a special treatment is necessary.

In this thesis, the student will become familiar with the basic theoretical
formalism to calculate the Sommerfeld enhancement and learn how to restore
partial-wave unitarity around the resonances in a self-consistent way. As
part of the project, the student shall write a small code computing the
Sommerfeld enhancement by solving a Schroedinger equation, investigate the
various parametric dependencies and compare the numerical results to known
(semi)-analytic results for several potentials.

suitable as
  • Bachelor’s Thesis Physics
Supervisor: Martin Beneke
Polarized gravitational waves

The detection of gravitational waves was one of the biggest scientific
breakthroughs of the past decade. Yet, little is known about the
polarization of these waves. In this thesis, the student should learn the
basic theory of gravitional waves in General Relativity drawing on
analogies with electromagnetic waves. Based on these properties, it will
be analyzed which interferometer configurations and which type bineary
black hole/neutron star merger events are optimal for an accurate
measurement of polarization. The present observational status is reviewed.
Using the available data of the advanced Virgo and LIGO detectors, the
student is expected to perform numerical studies of a few binary-BH events
with respect to their polarization signature.

No prior knowledge of general relativity is required. Learning the basics
of the theory is part of the thesis work.

suitable as
  • Bachelor’s Thesis Physics
Supervisor: Martin Beneke
Renormalization in Quantum Mechanics

In this project, however, the ideas renormalization will be studied
different non-relativistic quantum mechanical systems. By analytically
computing observables for scattering processes the student will become
familiar with the basic concepts of perturbation theory, dimensional
regularization, the idea of renormalization as a necessary procedure
to guarantee the predictive power of the theory, and symmetry breaking
through quantum anomalies.

Subsequently the phenomenon of a divergent perturbation series expansion
through renormalons is studied in this non-relativistic quantum mechanical
setup.

suitable as
  • Bachelor’s Thesis Physics
Supervisor: Martin Beneke

Current and Finished Theses in the Group

Gravitational high-energy scattering and the double-copy structure
Abschlussarbeit im Masterstudiengang Physik (Kern-, Teilchen- und Astrophysik)
Themensteller(in): Martin Beneke
Renormalization of SCET at NLP, calculation of the B-type current matching coefficient
Abschlussarbeit im Masterstudiengang Physik (Kern-, Teilchen- und Astrophysik)
Themensteller(in): Martin Beneke
Particle Physics, Dark Matter
Abschlussarbeit im Masterstudiengang Physik (Kern-, Teilchen- und Astrophysik)
Themensteller(in): Martin Beneke
Top of page