de | en

Physics of Energy Conversion and Storage

Prof. Aliaksandr Bandarenka

Research Field

We conduct research in the area of the physics of energy conversion and storage. The main topics include the design and implementation of functional materials and a better understanding and characterization of electrified interfaces. The material design is based on a bottom-up approach using input from electrochemical surface science and starting from model surfaces.

Address/Contact

James-Franck-Str. 1
85748 Garching b. München

Members of the Research Group

Professor

Office

Scientists

Students

Other Staff

Teaching

Course with Participations of Group Members

Titel und Modulzuordnung
ArtSWSDozent(en)Termine
Energy Materials 1
eLearning-Kurs
Zuordnung zu Modulen:
VO 2 Bandarenka, A. Fr, 10:00–12:00, PH HS3
Experimentalphysik für Chemie-Ingenieurwesen
eLearning-Kurs
Zuordnung zu Modulen:
VO 3 Bandarenka, A.
Mitwirkende: Kressierer, J.
Mi, 14:00–16:00, MI HS1
Do, 16:00–18:00, MI HS1
sowie einzelne oder verschobene Termine
Electrified Solid/Liquid Interfaces: from Theory to Applications
Zuordnung zu Modulen:
HS 1 Bandarenka, A. Mo, 14:00–15:00, PH II 227
Energy Materials
Zuordnung zu Modulen:
HS 1 Bandarenka, A. Fr, 12:00–13:00, PH II 127
Übung zu Experimentalphysik für Chemie-Ingenieurwesen
eLearning-Kurs
Zuordnung zu Modulen:
UE 2
Leitung/Koordination: Bandarenka, A.
Termine in Gruppen
Electrified Interfaces and Catalysis
Zuordnung zu Modulen:
SE 2 Bandarenka, A. Mi, 13:00–15:00, PH 3076
FOPRA Experiment 22: Laser-Induced Current Transient Technique (AEP, KM)
Zuordnung zu Modulen:
PR 1 Gubanova, E. Sadraoui, K.
Leitung/Koordination: Bandarenka, A.
FOPRA Experiment 30: Electrocatalysis (Alkaline Water Electrolysis) (AEP, KM)
Zuordnung zu Modulen:
PR 1 Schneider, P.
Leitung/Koordination: Bandarenka, A.
FOPRA-Versuch 101: Lithium-Ionen-Batterien (AEP, KM)
LV-Unterlagen
Zuordnung zu Modulen:
PR 1 Götz, R.
Leitung/Koordination: Bandarenka, A.
Repetitorium zu Elektrisch geladene Fest/Flüssig-Grenzflächen: von der Theorie zu Anwendungen
Zuordnung zu Modulen:
RE 2
Leitung/Koordination: Bandarenka, A.
Repetitorium zu Energie-Materialien
Zuordnung zu Modulen:
RE 2
Leitung/Koordination: Bandarenka, A.

Offers for Theses in the Group

Computational fast screening of core-shell nanoparticles for oxygen reduction reaction in fuel cells

Electrocatalysis technologies, including PEM fuel cells, can help to shape a sustainable energy future in which PEM fuel cells provide versatile stationary and portable power solutions. However, one key factor limiting their widespread commercialization are high costs for large platinum (Pt) loadings, which are required to catalyze the sluggish oxygen reduction reaction (ORR) at the fuel cell cathode. Thus, enhancing the catalyst activity with respect to the Pt mass is of great interest.

In this MSc work, we capitalize on data-driven design to propose new Pt catalysts with enhanced mass activities toward the ORR. We link experimental data with results from density functional theory (DFT) on Pt-based ORR catalysts to build a computational model which predicts mass activities.

The thesis will focus on generalizing a developed method based on generalized coordination numbers for high-throughput screenings to tailor electrocatalyst shapes and sizes toward optimized mass activities. In particular, we want to explore core-shell nanoparticles. In core-shell nanoparticles, the catalysis is driven on active Pt shells, but cheaper and more abundant metals at the core limit the precious Pt loading. 

Contact: Prof. Alessio Gagliardi alessio.gagliardi@tum.de or Prof. Aliaksandr Bandarenka bandarenka@ph.tum.de 

References

[1] M. Rueck, A. Bandarenka, F. Calle-Vallejo, A. Gagliardi, “Oxygen Reduction Reaction: Rapid Prediction of Mass Activity of Unstrained Nanostructured Platinum Electrocatalysts,” J. Phys. Chem. Lett., 2018, 9 (15), 4463-4468. DOI:10.1021/acs.jpclett.8b01864.

[2] B. Garlyyev(1), K. Kratzl(1), M. R¨uck(1), J. Michalicka, J. Fichtner, J. Macak, T. Kratky, S. Guenther, M. Cokoja, A.S. Bandarenka, A. Gagliardi, R.A. Fischer, “Optimizing the Size of Platinum Nanoparticles for Enhanced Oxygen Electro-Reduction Mass Activity,” Angew. Chem. Int. Ed., 2019, 58 (28), 9596-9600. DOI:10.1002/anie.201904492

[3] M. Rueck, A. Bandarenka, F. Calle-Vallejo, A. Gagliardi, “Fast Identification of Optimal Pure Platinum Nanoparticle Shapes and Sizes for Efficient Oxygen Electroreduction,” Nanoscale Adv., 2019, 1 (8), 2901–2909. DOI:10.1039/c9na00252a

[4] M. Rueck, B. Garlyyev, F. Mayr, A.S. Bandarenka, A. Gagliardi, “Oxygen Reduction Activities of Strained Platinum Core–Shell Electrocatalysts Predicted by Machine Learning,” J. Phys. Chem. Lett., 2020, 11 (5), 1773-1780. DOI:10.1021/acs.jpclett.0c00214

suitable as
  • Master’s Thesis Condensed Matter Physics
Supervisor: Aliaksandr Bandarenka
Improving the Stability Window of Aqueous Electrolytes as a Way Towards High-Energy Aqueous Potassium-Ion Batteries
suitable as
  • Bachelor’s Thesis Physics
Supervisor: Aliaksandr Bandarenka
Performance and Stability of Organic Anode Materials for Aqueous Potassium-Ion Batteries
suitable as
  • Bachelor’s Thesis Physics
Supervisor: Aliaksandr Bandarenka
 Performance and Stability of Prussian Blue Analogue Based Cathodes for Aqueous Potassium-Ion Batteries
suitable as
  • Bachelor’s Thesis Physics
Supervisor: Aliaksandr Bandarenka
Top-down approach for the synthesis of shape controlled nanoparticles
The thesis focuses on the facile synthesis of nanoparticles (NPs) by electrochemical erosion of different materials. NP can be immobilized on a support for applications in electro- and heterogeneous catalysis. Our unique approach involves applying an alternating voltage to a metal substrate placed in an electrolyte. The “green” method uses no further chemicals and allows controlling shape and size of the NPs adjusting parameters such as applied potential, frequency and electrolyte composition. Different characterization techniques such as TGA, XPS, XRD, SEM etc. will be used for the investigation of prepared materials and performance tests will be conducted. The contact persons are Dr. Elena Gubanova (elena.gubanova@tum.de) and Christian Schott (christian.schott@tum.de).
suitable as
  • Master’s Thesis Applied and Engineering Physics
Supervisor: Aliaksandr Bandarenka

Current and Finished Theses in the Group

3D-printed Electrodes for Energy Applications
Abschlussarbeit im Bachelorstudiengang Physik
Themensteller(in): Aliaksandr Bandarenka
Aging Models for Lithium-Ion Batteries using Measurements at the Beginning of Life
Abschlussarbeit im Masterstudiengang Physik (Physik der kondensierten Materie)
Themensteller(in): Aliaksandr Bandarenka
Analysis of the electrolyte/electrode interface of solid state batteries by electrochemical impedance spectroscopy
Abschlussarbeit im Masterstudiengang Physics (Applied and Engineering Physics)
Themensteller(in): Aliaksandr Bandarenka
Analysis of the impedance response of the graphite for Li-ion batteries
Abschlussarbeit im Bachelorstudiengang Physik
Themensteller(in): Aliaksandr Bandarenka
Analysis of the Impedance Response of Lithium Cobalt Oxide for Lithium-Ion Batteries
Abschlussarbeit im Bachelorstudiengang Physik
Themensteller(in): Aliaksandr Bandarenka
Direct-Casting of NMC Cathodes on Solid-State Electrolytes
Abschlussarbeit im Bachelorstudiengang Physik
Themensteller(in): Aliaksandr Bandarenka
Evaluation of long-term performance of anion exchange membranes in alkaline membrane water electrolysis
Abschlussarbeit im Masterstudiengang Physics (Applied and Engineering Physics)
Themensteller(in): Aliaksandr Bandarenka
Carbon Cloth as High-Area Current Collectors for Thin-Film Electrodes in Aqueous Sodium Ion Batteries
Abschlussarbeit im Bachelorstudiengang Physik
Themensteller(in): Aliaksandr Bandarenka
Implementing a physical model for cathode materials (NMC111) by using electrochemical impedance spectroscopy
Abschlussarbeit im Bachelorstudiengang Physik
Themensteller(in): Aliaksandr Bandarenka
In Situ Characterization of Defects in Solid-State Electrolytes
Abschlussarbeit im Masterstudiengang Physics (Applied and Engineering Physics)
Themensteller(in): Aliaksandr Bandarenka
In-Situ Investigation of Interfacial Phenomena between a Solid Li-Conductor and a Lithium Metal Anode with Spectroscopic Ellipsometry and Impedance Spectroscopy
Abschlussarbeit im Bachelorstudiengang Physik
Themensteller(in): Aliaksandr Bandarenka
In-Situ Investigation of Interfacial Phenomena between a Solid Li-Conductor and Silicon Anodes using Spectroscopic Ellipsometry and Electrochemical Impedance Spectroscopy
Abschlussarbeit im Bachelorstudiengang Physik
Themensteller(in): Aliaksandr Bandarenka
Protective Metal Layers for Solid-State Electrolytes
Abschlussarbeit im Bachelorstudiengang Physik
Themensteller(in): Aliaksandr Bandarenka
Molecular Crowding Electrolytes as a Way Towards High-Energy Aqueous Sodium-Ion Batteries
Abschlussarbeit im Masterstudiengang Physics (Applied and Engineering Physics)
Themensteller(in): Aliaksandr Bandarenka
Palladium nanoparticles as electrocatalyst for hydrogen evolution reaction
Abschlussarbeit im Masterstudiengang Physics (Applied and Engineering Physics)
Themensteller(in): Aliaksandr Bandarenka
Role of the Electrolyte Composition on the Stability of NiHCF Electrodes for Aqueous Sodium-Ion Batteries
Abschlussarbeit im Bachelorstudiengang Physik
Themensteller(in): Aliaksandr Bandarenka
Self-Discharge, Degradation and Characterization of Manganese Hexacyanomanganate Thin Films in Aqueous Sodium Ion Batteries
Abschlussarbeit im Bachelorstudiengang Physik
Themensteller(in): Aliaksandr Bandarenka
Investigation of Alizarin and Its Derivatives as Anode Materials for Aqueous Sodium Ion Batteries
Abschlussarbeit im Masterstudiengang Physics (Applied and Engineering Physics)
Themensteller(in): Aliaksandr Bandarenka
Top of page