de | en

Physics of Surfaces and Interfaces

Prof. Johannes Barth

Research Field

Research at E20 aims at the fundamental understanding of interface phenomena and their control for the design of functional nanoarchitectures in reduced dimensions. We investigate and manipulate individual nano-objects and highly organized supramolecular systems.

Utilizing scanning probe microscopy tools we examine the interior of complex molecules and develop self-assembly protocols for nanotextured surfaces. With advanced spectroscopy techniques we study charge transfer and electronic reconfiguration processes at ultimate temporal resolution. These activities promote the development of novel bottom-up fabrication methodologies and the molecular-level engineering of materials with tailored properties.

Address/Contact

James-Franck-Str. 1
85748 Garching b. München
+49 89 289 12608
Fax: +49 89 289 12338

Members of the Research Group

Professor

Office

Scientists

Students

Other Staff

Teaching

Course with Participations of Group Members

Titel und Modulzuordnung
ArtSWSDozent(en)Termine
Advanced Materials Analysis with Synchrotron Radiation: Techniques and Applications
eLearning-Kurs
Zuordnung zu Modulen:
VO 2 Allegretti, F. Fr, 11:00–13:00, PH II 227
Experimentalphysik für Chemie-Ingenieurwesen
eLearning-Kurs
Zuordnung zu Modulen:
VO 3 Auwärter, W. Mi, 14:00–16:00, MI HS1
Do, 16:00–18:00, MI HS1
sowie einzelne oder verschobene Termine
Fundamentals of Surface and Nanoscale Science
eLearning-Kurs
Zuordnung zu Modulen:
VO 2 Allegretti, F. Di, 14:00–16:00, PH II 227
Nanoscience mittels Rastersondenmikroskopie
eLearning-Kurs
Zuordnung zu Modulen:
VO 2 Papageorgiou, A. Di, 10:00–12:00, PH 2074
Physik für Life-Science-Ingenieure 1
eLearning-Kurs
Zuordnung zu Modulen:
VO 2 Iglev, H. Di, 14:00–16:00, WZW H14
Seminar to Fundamentals of Surface and Nanoscale Science
Zuordnung zu Modulen:
PS 2 Feulner, P.
Mitwirkende: Reichert, J.
Di, 18:00–19:00, PH II 227
Exercise to Fundamentals of Surface and Nanoscale Science
eLearning-Kurs
Zuordnung zu Modulen:
UE 2 Papageorgiou, A.
Leitung/Koordination: Allegretti, F.
Termine in Gruppen
Exercise to Nanoscience using Scanning Probe Microscopy
eLearning-Kurs
Zuordnung zu Modulen:
UE 2 Papageorgiou, A. Termine in Gruppen
Übung zu Analyse von neuartigen funktionellen Materialien mit Synchrotronstrahlung: Techniken und Anwendungen
Zuordnung zu Modulen:
UE 1 Allegretti, F. Termine in Gruppen
Übung zu Experimentalphysik für Chemie-Ingenieurwesen
eLearning-Kurs
Zuordnung zu Modulen:
UE 2 Reichert, J.
Leitung/Koordination: Auwärter, W.
Termine in Gruppen
Übung zu Physik für Life-Science-Ingenieure 1
eLearning-Kurs
Zuordnung zu Modulen:
UE 3 Reichert, J.
Leitung/Koordination: Iglev, H.
Termine in Gruppen
Doktorandenkolloquium: Molekulare Nanowissenschaften
Zuordnung zu Modulen:
KO 2 Barth, J. Fr, 14:00–16:00, PH II 227
FOPRA-Versuch 35: Elektronenspektroskopie an Oberflächen
aktuelle Informationen
Zuordnung zu Modulen:
PR 1 Barth, J.
Mitwirkende: Allegretti, F.Haag, F.
FOPRA-Versuch 83: Rastertunnelmikroskopie & Abbildung von Molekülen
aktuelle Informationen
Zuordnung zu Modulen:
PR 1 Barth, J.
Mitwirkende: Papageorgiou, A.Ran, W.
FOPRA-Versuch 89: Grundlegende Methoden der Oberflächenphysik
Zuordnung zu Modulen:
PR 1 Barth, J.
Mitwirkende: Allegretti, F.Küchle, J.
Repetitorium zu Seminar zu Grundlagen der Oberflächen- und Nanowissenschaften
Zuordnung zu Modulen:
RE 2
Leitung/Koordination: Barth, J.
Seminar über wissenschaftliche Arbeitsmethoden in der Oberflächenphysik
Zuordnung zu Modulen:
SE 2 Barth, J. Do, 12:00–14:00, PH II 227
Seminar zu aktuellen Fragen der Oberflächenphysik
Zuordnung zu Modulen:
SE 2 Barth, J. Do, 10:00–12:00, PH II 227
Tutorenseminar zu Experimentalphysik für Chemie-Ingenieurwesen
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
SE 2 Auwärter, W. Reichert, J.
Tutorenseminar zu Physik für Life-Science-Ingenieure 1
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
SE 2 Iglev, H. Reichert, J. Mi, 13:00–15:00, PH II 111
Vorträge im Rahmen des TUM Berufungs- und Karrieresystems
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
KO 0.1
Leitung/Koordination: Barth, J.
einzelne oder verschobene Termine

Offers for Theses in the Group

Foldamers on solid surfaces: tethering, folding and assembly

Nanoscience can arrange minute molecular entities into nanometric patterns in an orderly manner using self-assembly protocols. For practical applications, it is desirable to support such self-assembled structures on surfaces. With this project we wish to expand the capabilities of self-assembled molecular layers by mimicking the ability of biomolecules, such as proteins, to fold into well-defined conformations.

Therefore, we will investigate the on-surface self-assembly of a series of foldamers: synthetic molecular strands that fold into helices. For controlling the surface deposition in the solid/vacuum interface, we will employ a home-developed electrospray controlled ion beam deposition (ES-CIBD). Scanning tunnelling microscopy (STM) under ultra-high vacuum conditions will be used as a convenient tool to provide real-space information about the molecular adsorption, conformation and self-assembly. The conformation and assembly will be controlled by thermal processing and choice of solid support.

suitable as
  • Master’s Thesis Condensed Matter Physics
  • Master’s Thesis Applied and Engineering Physics
Supervisor: Johannes Barth
Tethering of molecular sensitizers on solar cell surfaces

Titanium dioxide is a semiconductor widely used in solar cells. To harness the energy of the solar spectrum, it is sensitised with dyes which are bound by single or dual tethers. Most commonly these anchors are carboxylate groups, however catecholates and hydroxamates are also reported as convenient and robust alternatives.

With this project we aim to provide a comparative study on the microscopic events that lead the different tethers to guide the adsorption of molecular dyes on model titania surfaces. Scanning tunnelling microscopy under ultra-high vacuum conditions and at a temperature range of 250 to 350 K will be used as a convenient tool to provide real-space information about the adsorption and diffusion of single and dual anchors on single crystal surfaces of titanium dioxide.

suitable as
  • Master’s Thesis Condensed Matter Physics
  • Master’s Thesis Applied and Engineering Physics
Supervisor: Johannes Barth

Current and Finished Theses in the Group

Surface engineering of 2-D materials by control of the surface-monolayer interaction
Abschlussarbeit im Masterstudiengang Physics (Applied and Engineering Physics)
Themensteller(in): Francesco Allegretti
Top of page