de | en

Biomedical Physics

Prof. Franz Pfeiffer

Research Field

Our interdisciplinary research portfolio is focused on the translation of modern x-ray physics concepts to biomedical sciences and clinical applications. We are particularly interested in advancing conceptually new approaches for biomedical x-ray imaging and therapy, and work on new kinds of x-ray sources, contrast modalities, and images processing algorithms. Our activities range from fundamental research using state-of-the-art, large-scale x-ray synchrotron and laser facilities to applied research and technology transfer projects aiming at the creation of improved biomedical device technology for clinical use. From a medical perspective, our work currently targets early cancer and osteoporosis diagnostics.

Address/Contact

James-Franck-Str. 1
85748 Garching b. München
+49 89 289 12552
Fax: +49 89 289 12548

Members of the Research Group

Professors

Office

Scientists

Students

Other Staff

Teaching

Course with Participations of Group Members

Titel und Modulzuordnung
ArtSWSDozent(en)Termine
Basic Mathematical Methods for Imaging and Visualization (IN2124)
eLearning-Kurs LV-Unterlagen
Zuordnung zu Modulen:
VI 4 Lasser, T.
Mitwirkende: Cheslerean-Boghiu, T.Pekel, E.
Mi, 15:30–17:00, MW 1801
Mo, 16:00–18:00, Interims I 102
Biomedical Physics 1
eLearning-Kurs
Zuordnung zu Modulen:
VO 2 Pfeiffer, F.
Mitwirkende: Schaff, F.

Biomedical Physics 2
eLearning-Kurs
Zuordnung zu Modulen:
VO 2 Pfeiffer, F. Wilkens, J.
Mitwirkende: Schaff, F.

Chemistry in Biomedical Imaging for Physicists
eLearning-Kurs
Zuordnung zu Modulen:
VO 2 Pfeiffer, F.
Mitwirkende: Busse, M.
Do, 16:30–18:00, MSB E.126
sowie einzelne oder verschobene Termine
Einführung in die Biophysik
Zuordnung zu Modulen:
VO 2 Bausch, A. Gerland, U. Herzen, J. Mo, 14:00–16:00, GALILEO 300
Image Processing in Physics
eLearning-Kurs
Zuordnung zu Modulen:
VO 2 Achterhold, K. Herzen, J. Mi, 10:00–12:00, PH HS3
Medical Imaging Technology
eLearning-Kurs
Zuordnung zu Modulen:
VO 2 Birnbacher, L. Brosch-Lenz, J. Burian, E. Busse, M. Ganter, C. … (insgesamt 9) Mo, 10:00–11:30
Modern X-Ray Physics
eLearning-Kurs
Zuordnung zu Modulen:
VO 2 Achterhold, K.
Mitwirkende: Dierolf, M.
Di, 10:00–12:00, PH II 227
sowie einzelne oder verschobene Termine
Physik für Life Sciences
eLearning-Kurs
Zuordnung zu Modulen:
VO 2 Herzen, J. Di, 10:00–12:00, WZW H14
Biomedical Physics
eLearning-Kurs
Zuordnung zu Modulen:
HS 2 Pfeiffer, F.
Mitwirkende: Schaff, F.
einzelne oder verschobene Termine
Blockseminar zu aktuellen Themen in der Biomedizinischen Physik (E17 Seminarwoche)
Zuordnung zu Modulen:
HS 2 Herzen, J. Pfeiffer, F.
Modern X-Ray Physics
eLearning-Kurs
Zuordnung zu Modulen:
HS 2 Pfeiffer, F.
Mitwirkende: Achterhold, K.Dierolf, M.
Fr, 13:00–15:00, PH 2074
Seminar zu aktuellen Themen im BioEngineering (MIBE-Seminar)
Zuordnung zu Modulen:
HS 2 Pfeiffer, F.
Exercises to Modern X-Ray Physics
eLearning-Kurs
Zuordnung zu Modulen:
UE 2 Dierolf, M.
Leitung/Koordination: Achterhold, K.
Termine in Gruppen
Exercise to Biomedical Physics 1
Zuordnung zu Modulen:
UE 2 Schaff, F.
Leitung/Koordination: Pfeiffer, F.
Do, 12:00–14:00, PH HS2
Exercise to Biomedical Physics 2
Zuordnung zu Modulen:
UE 2 Schaff, F. Wilkens, J.
Leitung/Koordination: Pfeiffer, F.
Do, 14:00–16:00, PH HS2
Exercise to Image Processing in Physics
eLearning-Kurs
Zuordnung zu Modulen:
UE 1
Leitung/Koordination: Herzen, J.
Termine in Gruppen
Übung zu Chemie der biomedizinischen Bildgebung für Physiker
Zuordnung zu Modulen:
UE 1 Busse, M.
Leitung/Koordination: Pfeiffer, F.
Übung zu Einführung in die Biophysik
Zuordnung zu Modulen:
UE 2 Burger, L. Englbrecht, F. Gerland, U. Herzen, J. Hsu, C. … (insgesamt 8)
Leitung/Koordination: Bausch, A.
Übung zu Physik für Life Sciences
Zuordnung zu Modulen:
UE 3 Wirtensohn, S.
Leitung/Koordination: Herzen, J.
Termine in Gruppen
BEMP Lab 01: Clinical Computed Tomography
eLearning-Kurs LV-Unterlagen aktuelle Informationen
Zuordnung zu Modulen:
PR 4 Birnbacher, L. Hammel, J.
Leitung/Koordination: Pfeiffer, F.
einzelne oder verschobene Termine
BEMP Lab 02: High-Resolution Micro-Computed Tomography
eLearning-Kurs aktuelle Informationen
Zuordnung zu Modulen:
PR 4 Riedel, M.
Leitung/Koordination: Herzen, J.
einzelne oder verschobene Termine
Current Research Topics in Biomedical Imaging (E17 Seminar)
Zuordnung zu Modulen:
SE 2 Herzen, J. Pfeiffer, F. Do, 10:00–12:00, PH 2074
FOPRA-Versuch 79: Röntgencomputertomographie (AEP, BIO, KM, KTA)
LV-Unterlagen aktuelle Informationen
Zuordnung zu Modulen:
PR 1 Häusele, J.
Leitung/Koordination: Pfeiffer, F.
Informationen zu Forschungsphase, Masterarbeit und Studienabschluss im Masterstudiengang Biomedical Engineering and Medical Physics
eLearning-Kurs
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
OV 0.1 Herzen, J. einzelne oder verschobene Termine
Master's Seminar (BEMP)
Zuordnung zu Modulen:
SE 10
Leitung/Koordination: Herzen, J.
Master's Work Experience (BEMP)
Zuordnung zu Modulen:
FO 10
Leitung/Koordination: Herzen, J.
Presentation of the Master's Program Biomedical Engineering and Medical Physics
eLearning-Kurs
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
OV 0.1 Herzen, J. einzelne oder verschobene Termine
Repetitorium zu Biomedizinische Physik
Zuordnung zu Modulen:
RE 2
Leitung/Koordination: Pfeiffer, F.
Repetitorium zu Blockseminar zu aktuellen Themen in der Biomedizinischen Physik (E17 Seminarwoche)
Zuordnung zu Modulen:
RE 2
Leitung/Koordination: Pfeiffer, F.
Repetitorium zu Moderne Röntgenphysik
Zuordnung zu Modulen:
RE 2
Leitung/Koordination: Pfeiffer, F.
Repetitorium zu Seminar zu aktuellen Themen im BioEngineering (MIBE-Seminar)
Zuordnung zu Modulen:
RE 2
Leitung/Koordination: Pfeiffer, F.

Offers for Theses in the Group

AI in Physics: Convolutional neural networks for dark-field X-ray CT reconstruction

Grating-based X-ray dark-field imaging uses scattering of X-rays to create an image of an object, rather than conventional X-ray attenuation. The combination of X-ray scattering with imaging allows us to map information about structures that are much smaller than the resolution of the imaging system over a large field of view. X-ray dark-field imaging can be combined with computed tomography (CT) to create three-dimensional images of the scattering distribution inside an object. DF-CT was recently implemented for the first time into a clinical CT here at TUM (https://www.bioengineering.tum.de/en/news/details/new-technology-for-clinical-ct-scans). The goal of this project is to use convolutional neural networks (CNNs) to remove sampling artefacts in DF-CT images. Due to the unavailability of training data from the DF-CT machine, a technologically similar experimental setup and apply transfer learning will be used. The student will acquire, process and prepare training data, as well as train and apply CNNs. Character of thesis work: mainly computational physics & image processing For more information, please contact: Dr. Florian Schaff (florian.schaff@tum.de), or Prof. Franz Pfeiffer (franz.pfeiffer@tum.de).

suitable as
  • Master’s Thesis Biomedical Engineering and Medical Physics
Supervisor: Franz Pfeiffer
AI in Physics: Convolutional neural networks for dark-field X-ray CT reconstruction

Grating-based X-ray dark-field imaging uses scattering of X-rays to create an image of an object, rather than conventional X-ray attenuation. The combination of X-ray scattering with imaging allows us to map information about structures that are much smaller than the resolution of the imaging system over a large field of view. X-ray dark-field imaging can be combined with computed tomography (CT) to create three-dimensional images of the scattering distribution inside an object.  DF-CT was recently implemented for the first time into a clinical CT here at TUM

(https://www.bioengineering.tum.de/en/news/details/new-technology-for-clinical-ct-scans).

The goal of this project is to use convolutional neural networks (CNNs) to remove sampling artefacts in DF-CT images. Due to the unavailability of training data from the DF-CT machine, a technologically similar experimental setup and apply transfer learning will be used. The student will acquire, process and prepare training data, as well as train and apply CNNs.

Character of thesis work: mainly computational physics & image processing

For more information, please contact: Dr. Florian Schaff (florian.schaff@tum.de), or Prof. Franz Pfeiffer (franz.pfeiffer@tum.de).

suitable as
  • Master’s Thesis Applied and Engineering Physics
Supervisor: Franz Pfeiffer
Dark-field Chest X-ray Imaging: Advanced image processing for clinical applications

Dark-field radiography exploits the scattering of X-rays to visualize structures below the resolution limit. Currently, several initial clinical patient studies are underway on a worldwide first prototype we recently realized at Klinikum rechts der Isar. Within the framework of this project, the special algorithms for image post-processing of these first clinical data will be further optimized and used together with the participating radiologists for the evaluation of better direction of lung diseases.

Character of thesis work: mainly computational physics & image processing

For more information, please contact: Rafael Schick (rafael.schick@tum.de) or Franz Pfeiffer (franz.pfeiffer@tum.de).

suitable as
  • Master’s Thesis Biomedical Engineering and Medical Physics
Supervisor: Franz Pfeiffer
Dark-field Chest X-ray Imaging: Advanced image processing for clinical applications

Dark-field radiography exploits the scattering of X-rays to visualize structures below the resolution limit. Currently, several initial clinical patient studies are underway on a worldwide first prototype we recently realized at Klinikum rechts der Isar. Within the framework of this project, the special algorithms for image post-processing of these first clinical data will be further optimized and used together with the participating radiologists for the evaluation of better direction of lung diseases.

Character of thesis work: mainly computational physics & image processing

For more information, please contact: Rafael Schick (rafael.schick@tum.de) or Franz Pfeiffer (franz.pfeiffer@tum.de).

suitable as
  • Master’s Thesis Applied and Engineering Physics
Supervisor: Franz Pfeiffer
Dark-field Chest X-ray Imaging: Development of registration algorithms for the analysis of functional lung images

Dark-field radiography exploits the scattering of X-rays to reveal structures in lung tissue that cannot be visualized with conventional imaging. Currently, several initial clinical patient studies are underway on a worldwide first prototype we recently realized at Klinikum rechts der Isar. Within the scope of this project, special registration algorithms are to be developed that can register thorax images in inhalation and exhalation and allow local differences between ventilation states (for example in certain lung diseases).

Character of thesis work: mainly computational physics & image processing

For more information, please contact: Rafael Schick (rafael.schick@tum.de) or Franz Pfeiffer (franz.pfeiffer@tum.de).

suitable as
  • Master’s Thesis Applied and Engineering Physics
Supervisor: Franz Pfeiffer
Dark-field Chest X-ray Imaging: Development of registration algorithms for the analysis of functional lung images

Dark-field radiography exploits the scattering of X-rays to reveal structures in lung tissue that cannot be visualized with conventional imaging. Currently, several initial clinical patient studies are underway on a worldwide first prototype we recently realized at Klinikum rechts der Isar. Within the scope of this project, special registration algorithms are to be developed that can register thorax images in inhalation and exhalation and allow local differences between ventilation states (for example in certain lung diseases).Character of thesis work: mainly computational physics & image processing

For more information, please contact: Rafael Schick (rafael.schick@tum.de) or Franz Pfeiffer (franz.pfeiffer@tum.de).

suitable as
  • Master’s Thesis Biomedical Engineering and Medical Physics
Supervisor: Franz Pfeiffer
Dark-field Chest X-ray Imaging: Monte Carlo based simulation of Compton scattering

Dark-field radiography is a novel X-ray imaging technique that is being tested for the first time in clinical patient studies on a worldwide first prototype recently completed by us at the TUM Klinikum rechts der Isar. Within the scope of this project, Monte Carlo based Compton simulations will be developed, which will allow an exact modelling of the Compton scattering and thus a better correction of the image artifacts.

Character of thesis work: experimental physics (50%) & computational physics (50%).

For more information, please contact: Henriette Bast (henriette.bast@tum.de) or Franz Pfeiffer (franz.pfeiffer@tum.de).

suitable as
  • Master’s Thesis Biomedical Engineering and Medical Physics
Supervisor: Franz Pfeiffer
Dark-field Chest X-ray Imaging: Monte Carlo based simulation of Compton scattering

Dark-field radiography is a novel X-ray imaging technique that is being tested for the first time in clinical patient studies on a worldwide first prototype recently completed by us at the TUM Klinikum rechts der Isar. Within the scope of this project, Monte Carlo based Compton simulations will be developed, which will allow an exact modelling of the Compton scattering and thus a better correction of the image artifacts.

Character of thesis work: experimental physics (50%) & computational physics (50%).

For more information, please contact: Henriette Bast (henriette.bast@tum.de) or Franz Pfeiffer (franz.pfeiffer@tum.de).

suitable as
  • Master’s Thesis Applied and Engineering Physics
Supervisor: Franz Pfeiffer
Dark-field X-ray microCT: Pre-clinical research on improved lung disease detection

Dark-field computed tomography uses the wave property of X-rays to provide complementary contrasts in X-ray imaging. In this project, an existing prototype for dark-field CT in mice will be used to explore the use of dark-field contrast in pre-clinical research for improved detection of lung diseases in collaboration with the Helmholtz Center for Health. In addition to experimental work to support the conduct of the preclinical studies, algorithmic research to reduce image noise and dose is planned.

Character of thesis work: experimental medical physics (60%) & image processing (40%).

For more information, please contact: Benedikt Guenther (benedikt.guenther@mytum.de), Simon Zandarco (simon.zandarco@tum.de) or Franz Pfeiffer (franz.pfeiffer@tum.de).

suitable as
  • Master’s Thesis Biomedical Engineering and Medical Physics
Supervisor: Franz Pfeiffer
Dark-field X-ray microCT: Pre-clinical research on improved lung disease detection

Dark-field computed tomography uses the wave property of X-rays to provide complementary contrasts in X-ray imaging. In this project, an existing prototype for dark-field CT in mice will be used to explore the use of dark-field contrast in pre-clinical research for improved detection of lung diseases in collaboration with the Helmholtz Center for Health. In addition to experimental work to support the conduct of the preclinical studies, algorithmic research to reduce image noise and dose is planned.

Character of thesis work: experimental medical physics (60%) & image processing (40%).

For more information, please contact: Benedikt Guenther (benedikt.guenther@mytum.de), Simon Zandarco (simon.zandarco@tum.de) or Franz Pfeiffer (franz.pfeiffer@tum.de).

suitable as
  • Master’s Thesis Applied and Engineering Physics
Supervisor: Franz Pfeiffer

Current and Finished Theses in the Group

Deep Learning-Based Denoising of Limited-Angle, Sparse-View CT As Post-Processing Method for Chest CT Applications
Abschlussarbeit im Masterstudiengang Physics (Applied and Engineering Physics)
Themensteller(in): Franz Pfeiffer
Dynamic X-Ray Dark-Field Imaging at a Compact Synchrotron Source
Abschlussarbeit im Masterstudiengang Physik (Biophysik)
Themensteller(in): Franz Pfeiffer
Advanced Image Processing for Clinical Darkfield Chest X-Ray Applications
Abschlussarbeit im Masterstudiengang Physics (Applied and Engineering Physics)
Themensteller(in): Franz Pfeiffer
Measurement of AXR in cell lines undergoing different forms of cell death
Abschlussarbeit im Masterstudiengang Physik (Biophysik)
Themensteller(in): Julia Herzen
Post-Processing Algorithms for X-ray Dark-Field Computed Tomography
Abschlussarbeit im Masterstudiengang Physik (Kern-, Teilchen- und Astrophysik)
Themensteller(in): Franz Pfeiffer
Motion Correction in Nuclear Medicine: Quantitative and Qualitative Analysis of Conventional Image Registration Methods in Clinical Cardiac Imaging
Abschlussarbeit im Masterstudiengang Physics (Applied and Engineering Physics)
Themensteller(in): Franz Pfeiffer
Top of page