Physik der Hadronen und Kerne

Forschungsgebiet

Kernspektroskopie und Angewandte Kernphysik: Durch hochauflösende Spektroskopie von Kernen ist es möglich Rückschlüsse auf die effektiven Wechselwirkungen im Kern zu erhalten. Dabei untersuchen wir meist Kerne unter extremen Bedingungen, um verschiedene Komponenten der Wechselwirkung zu studieren und die experimentellen Daten mit theoretischen Vorhersagen zu vergleichen. Unsere Gruppe beschäftigt sich auch mit der Entwicklung und Nutzung von kernphysikalischen Methoden für andere Gebiete, wie zum Beispiel der Astrophysik und der Materialanalyse.

Adresse/Kontakt

James-Franck-Str. 1
85748 Garching b. München
e12_office@ph.tum.de
+49 89 289 12434
Fax: +49 89 289 12297

Mitarbeiterinnen und Mitarbeiter der Arbeitsgruppe

Mitarbeiterinnen und Mitarbeiter

Lehrangebot der Arbeitsgruppe

Lehrveranstaltungen mit Beteiligung der Arbeitsgruppe

Titel und Modulzuordnung
ArtSWSDozent(en)Termine

Ausgeschriebene Angebote für Abschlussarbeiten an der Arbeitsgruppe

Characterization of a Particle Detector

The Multi-purpose Active-target particle Telescope (MAPT) is a new particle detector for astrophysics and radiation monitoring purposes. The instrument is currently under development at our institute and comprises several sub-detectors. The main instrument is an active-target tracking detector made from scintillating plastic fibers.

To fully understand and quantify the physical processes governing the interactions of charged particles with the active target, we have built a small-scale experimental setup. This setup was recently subjected to a beam of protons and pions at the Paul Scherrer Institute in Switzerland. For a precise analysis of the results, we need a full characterization of the experiment. The purpose of this thesis is to measure the inherent properties of the setup, such as electrical and optical crosstalk, channel gains, and light yields. These values will be used in the analysis of the beam test data.

 

Tasks

  • Familiarize yourself with the physics of scintillators and photodetectors (SiPM).
  • Familiarize yourself with existing experimental setup and measurement principles.
  • Identify parameters to be measured and determine possible measurement strategies
    using a radioactive source.
  • Conduct measurements and analyze the results.
  • Use your results to provide the necessary parameters for analyzing the beam test data.

 Contact

MSc Martin Losekamm
Email:m.losekamm@tum.de

geeignet als
  • Bachelorarbeit Physik
Themensteller(in): Stephan Paul
Evaluation of Scintillator Materials and Silicon Photomultipliers for a Compact Dosimeter

The Multi-purpose Active-target particle Telescope (MAPT) is a new particle detector for astrophysics and radiation monitoring purposes. The instrument is currently under development at our institute and comprises several sub-detectors. One of these sub-detectors shall be a general-purpose dosimeter for charged and uncharged radiation, which shall use scintillator material coupled to silicon photomultlipliers (SiPMs).

The purpose of this thesis is to find suitable scintillator—SiPM combinations and characterize them in order to find the optimal combination. You will have to familiarize yourself with scintillating materials and the working principle of SiPMs before identifying candidate combinations. Based on the requirements for the dosimeter, you will then have to determine appropriate figures of merit and design an experimental setup capable of measuring these parameters. The result of the thesis shall be a list of suitable scintillator—SiPM combinations that fulfill the given requirements, as well as an analysis identifying the optimal solution.

Tasks

  • Familiarize yourself with the physics of scintillators and photodetectors (SiPM).
  • Based on given requirements, identify possible scintillator—SiPM combinations.
  • Design, build, and use an experimental setup to quantify the figure of merit of every combination.
  • Verify suitability of chosen materials and detectors.
  • Identify “optimal” combination for use in final device.
  • Optional: If time allows, help design a detector layout and read-out electronics for the final device.

Contact

MSc Martin Losekamm

Email: m.losekamm@tum.de

geeignet als
  • Bachelorarbeit Physik
Themensteller(in): Stephan Paul
Event Reconstruction and Particle Identification for the Multi-purpose Active-target Particle Telescope

The Multi-purpose Active-target Particle Telescope (MAPT) is a newly developed radiation detector for space applications. The detector shall be used to monitor the radiation environment on spacecraft and satellites. It is most sensitive to low-energy protons and ions and can distinguish the particles by their interactions with the material of the detector.

In this thesis, the existing event reconstruction software shall be extended to allow the identification of different particle species. Therefore, the student has to implement a detailed model of particle interactions in matter into the analysis framework. The software shall be validated using existing data from a prototype experiment conducted in 2016 and simulations. 

 Tasks

  • Acquire necessary theoretical understanding of interactions of particles with matter.
  •  Implement the relevant physical processes in the analysis framework.
  • Validate the algorithms and analyze existing data, as well as simulated data.

 Prerequisites

Experience in C/C++ programming is helpful, but not required. An introductory course on C++ programming is offered.

 

Contact

MSc Thomas Pöschl

Email: thomas.poeschl@ph.tum.de

geeignet als
  • Masterarbeit Kern-, Teilchen- und Astrophysik
Themensteller(in): Stephan Paul
Simulation of the Antiproton Flux in the Atmosphere

High energy cosmic-ray particles create antiprotons in interactions with molecules in the upper atmosphere. The flux characteristics of these antiprotons can be used to probe models of production and transport of particles in the atmosphere. Deviations of the measured flux from our models can indicate new mechanisms or sources of antiprotons.   

Several balloon-borne experiments have measured this particle flux in the last couple of years. In this thesis, these results shall be compared to simulations and to validate the current implementations of antiproton-production mechanisms in the high-energy simulation framework Geant4.

 

Tasks

  • Acquire necessary theoretical understanding of antiproton production and transport mechanisms in Earth’s atmosphere.
  • Conduct simulations of cosmic-ray interactions in the atmosphere using the simulation tool PLANETOCOSMICS, which is based on the high-energy simulation framework Geant4 (programming language C++).
  • Compare the results to measurements and interpret the findings.

Contact

MSc Thomas Pöschl
Email: thomas.poeschl@tum.de

geeignet als
  • Bachelorarbeit Physik
Themensteller(in): Stephan Paul

Abgeschlossene und laufende Abschlussarbeiten an der Arbeitsgruppe

Geometrical Constraints for Proton Minibeam Radiotherapy
Abschlussarbeit im Masterstudiengang Physik (Kern-, Teilchen- und Astrophysik)
Themensteller(in): Andreas Ulrich

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.