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1 Introduction

As particle physics was evolving in the middle of the last century and more and more
experimental data were collected, data analysis with the help of computers became
important. Nowadays it is impossible to imagine a high-energy experiment, where
each recorded event is analyzed separately by hand, like it was done in the early
times of particle physics. There are several reasons for this. First of all, physicists
are usually looking for rare processes employing beams of high intensity and high
rates of data acquisition (up to 50 million events per second in modern experiments).
Combined with typical beam times of several weeks or even months one can easily end
up with a recorded event statistics of several billion events. Moreover, data delivered
by contemporary detectors are complex and have to be processed in several steps.

Figure 1: Left row: The Big European bubble chamber (BEBC) at CERN with a
height of 4m. It was used with a filling of liquid hydrogen and operated in 1973 -
1984. Lower Figure: A typical bubble chamber picture showing a few particle tracks.
Right row: The ALICE detector at CERN (2010) with a height of 16 m and a length
of 26 m. Lower Figure: A simulated event in the ALICE detector of a lead lead
collision.

With specialized software, the recorded digital signals are translated into interaction
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points of particles with the detector (so-called hits). All interaction points in one
recorded event are combined and complex computing algorithms reconstruct out of
some thousand points real particle tracks giving the physicist “high-level” informa-
tion like momentum, time-of-flight, energy, etc. of the detected particle. From this
point the work of data analysis starts:

to obtain interesting results

from a huge amount of collected information

with help of elaborated algorithms

implemented in computer programs.

With this practicum we want to give an insight into the field of Data Analysis in
particle physics experiments.
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2 Basics of the analyzed experiment

The data which you will analyze within this lab were collected with the High
Acceptance Di-Electron Spectrometer (HADES) see fig 2. It is a fixed target

Figure 2: On the left side an exploded view of the HADES spectrometer is shown.
On the right side you see a side view of the spectrometer with its many sub-detectors.

experiment located at the GSI research center in Darmstadt and currently performs
measurements at the SIS18 accelerator with typical beam energies of a few GeV per
nucleon. As follows from its name, the detector has a high acceptance, covering
85% of the azimuthal angle and polar angles from 15 to 85 degrees. This is a large
spectrometer consisting out of many sub-detectors. Here is a short overview:

• The target. For the analyzed experiment a liquid hydrogen (LH2) target was
used. It had a length of 5 cm and was cooled down to a temperature of 20K.

• The Ring Imaging Cherenkov detector (RICH) for lepton identification. This
detector is filled with a gas in which only leptons create Cherenkov light when
traversing this detector. In the energy regime where the spectrometer records
events this detector is completely blind for hadrons.

• The 4 planes of multi wire drift chambers (MDC’s). These drift chambers
are employed for particle tracking and momentum reconstruction. The cham-
bers are filled with a gas mixture and contain six layers of wire planes where
avalanche signals caused by particles traversing the chambers can be registered.
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• The Magnet. Between the MDC planes I, II and III, IV the superconducting
magnet is located. It provides a toroidal magnetic field and is used for the
momentum determination of the particles. By traversing the magnetic field
each particle is bended according to its momentum. The change in flight direc-
tion can then be measured by the MDC chambers and the momentum of the
particle can be reconstructed.

• The time-of-flight Detectors. These scintillating detectors are located at the
very end of the spectrometer. Their quality is a very good time resolution.
They are employed to measure the time which particles need to fly from the
target, through the spectrometer, to the TOF detectors. Together with the
measured trajectory length, the particle velocity can be reconstructed.

In summary the purpose of the Spectrometer is to reconstruct the four-momentum
of a particle with the help of sub-detectors.

Let us remind how a four-vector looks like:

p =


E
px
py
pz

 (1)

The three-momentum components are directly measured by the spectrometer. To
determine the energy of a particle, which can be also written like E =

√
p2 +m2,

one needs to know additionally its mass. The mass of a particle is uniquely defined
by its type: a proton, a pion, a kaon etc. Therefore, to obtain the full 4-vector one
has to perform a so called particle identification.
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3 Particle identification

3.1 dE/dx vs Momentum

If particles traverse material they loose energy. The energy loss can be hereby de-
scribed analytically by the Bethe-Bloch formula.

−dE
dx

=
4πnz2

mec2β2
·
(

e2

4πε0

)2

·
[
ln

(
2mec

2β2

I · (1− β2)

)
− β2

]
(2)

with β = v/c, v the velocity of the particle, E the energy of the particle, x the
distance traveled by the particle, c speed of light, z · e the particle charge, e the
charge of the electron, me the rest mass of the electron, n the electron density of the
traversed material and I the mean excitation potential of the material.
As the energy loss is independent of the mass of the traversing particle one obtains
different energy loss curves for different particle species, when plotting the dE/dx vs
the measured momentum of the particle.
In case of the HADES spectrometer the energy loss of particles can be measured in
the MDC chambers and the TOF detectors. In fig. 3 you see the energy loss of the
particles in the MDC chambers plotted against their momentum.
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Figure 3: The energy loss (dE/dx) plotted against the particles momentum times
their charge.
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Your Task: Can you name the different particles you see on fig. 3?

3.2 Beta vs Momentum

Another way to identify particles is to measure not the energy loss but the time
of flight of the particles. With help of the time of flight and the path length of
the particle one can calculate the particles velocity (β). We can write the particles
momentum as a function of the velocity as follows:

p =
m · v√
1− β2

, (3)

or

p/c =
m · β√
1− β2

, (4)

Then one can easily derive:

m =
p

c

√
1

β2
− 1 (5)

The last formula shows that in order to identify the mass of a particle, it is enough
to measure simultaneously its momentum and velocity.
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4 Analyzing Events

In April 2007 the HADES experiment collected 1.2·109 events of proton-proton colli-
sions with the proton-beam having a kinetic energy of 3.5 GeV. For the lab a subset
of the collected statistics will be provided.

As a result of the collision new particles are created out of the energy the beam
proton imposes on the target. For example:

p+ p→ p+ p (6)

p+ p→ p+ p+ π0 (7)

p+ p→ π0 + π+ + π+ (8)

p+ p→ p+K+ + Λ (9)

p+ p→ p+ n+ e+ (10)

p+ p→ p+ p+ ω (11)

p+ p→ Σ+ +K0 + p (12)

p+ p→ Σ− +K+ + p+ π+ (13)

Your Task: Which of these reactions are not possible and why? Think of conser-
vation laws which have to be fulfilled.
Some of the particles appearing in reactions 6-13 are short-living particles which
have lifetimes in the order of ns and decay lengths of few fm1. It is impossible to
measure such particles directly. However, in order to reconstruct these particles,
one can employ two methods which are based on the laws of energy and momentum
conservation.

4.1 Invariant mass

Two variables, commonly used in high-energy physics are invariant and missing
masses. The invariant mass of two particles is defined as the sum of the particles
4-vectors squared:

MInv = (P1 + P2)2.

The invariant mass can be also expressed as:

MInv = m2
1 +m2

2 + 2 (E1E2 − |p1| · |p2| · cos θ) .

1fm stands for femtometer (or, an obsolete name, fermi). It is a common unit of length in
particle physics. 1 fm = 10−15 m
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Since the invariant mass is a square of the 4-vector, this variable—as its name
suggests—is invariant under Lorenz transformations. Short-living particles can be
reconstructed with this simple method.

Note, that the invariant mass can be constructed for any amount of particles:

Mn
Inv = (P1 + P2 + . . .+ Pn)2.

This definition is used for example when studying 3- and 4-body decays.

Example:
The decay of Λ→ pπ−. The Λ has a lifetime of ≈ 0.26 ns. It is thus able to fly only
≈ 8 cm before decaying. In our Spectrometer we will therefore see no direct evidence
for the Λ particle and it can be only reconstructed by its decay products.
The decay of η → π+π−π0. In this case one even needs to detect three particles and
build the invariant mass of their Lorentz Vectors to obtain an η signal.

4.2 Missing mass

In case of elementary reactions (p + p, π + p, ...) it is also possible to reconstruct
the event topology by means of the missing mass method. For this method one uses
the Lorentz vectors of the incoming beam and the target. If one reconstructs in an
event all but one particles in the final state one can identify the missing particle with
the following method:

Mmissed = (PBeam + PTarget − P1 − P2 − . . .− Pn)2.

Thus a missing mass technique can be employed for the reconstruction of particles
that were not detected.

Example:
Assuming we have measured the reaction

π− + p→ Λ +K0
S.

and the experiment allows to reconstruct the K0 via its decay into a π+π−-pair. We
can try to reconstruct the Λ also by its decay products or apply the missing mass
technique. A 4-momentum conservation for this reaction reads as follows

Pπ− + Pp = PΛ + PK0
S
.
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In this case, the missing mass of the reconstructed K0 will be:

MK0

miss = (Pπ− + Pp − Pπ− − Pπ+)2 =̂ (PΛ)2 = MΛ.

Your Task: Why in case of ion collisions, it is complicated, or even impossible to
apply the missing mass technique?
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5 Kinematics of elastic collisions

An elastic collision is a special type of reaction in which no new particles are produced
and the colliding particles do not change their type. Examples are collisions of two
billiard balls or proton-proton elastic scattering: p+ p→ p+ p. In case the physicist
wants to identify elastic events he or she can exploit the special kinematics of the
reaction.

Let us consider a collision of a beam particle PB with a target particle PT and two
particles in the final state.

PB + PT →P1 + P2 (14)

Since only two particles in the final state are produced, there are 8 kinematic degrees
of freedom represented by the components of the two four-vectors. Two components
are fixed by the masses of the particles, three by momentum conservation and one by
energy conservation. Therefore, only two degrees of freedom remain. This means in
the case of an elastic collision one only needs to measure two observables and deduce
all components of the four-vector.
Example:
We measure ~p1,x and ~p1,y. Using momentum conservation we can write:

0 = ~p1,x + ~p2,x (15)

0 = ~p1,y + ~p2,y (16)

We also know that

~pB,z = ~p1,z + ~p2,z (17)

And (from energy conservation)

EB,Kin + 2 ·mp =
√
~p2

1,x + ~p2
1,y + ~p2

1,z +m2
p +

√
~p2

2,x + ~p2
2,y + ~p2

2,z +m2
p (18)

As in an experiment EB,Kin and ~pB,z are normally known, it is simple to derive the
whole kinematics from measuring ~p1,x and ~p1,y.

But we can also derive the elastic kinematics by measuring the deflection angles
of the outgoing particles. A very natural frame for studying elastic events is the
Center of Mass frame (CM, noted with *) in which target and beam vectors sum
up to zero. (The system in which the target is at rest is called Target System,

12



Figure 4: Angles of an elastic collision
in the CM-System

Figure 5: Angles of an elastic collision
in the Target-System

TS or Laboratory System). Moreover one would consider here instead of Cartesian
coordinates spherical coordinates.

r =
√
p2
x + p2

y + p2
z (19)

ϕ = arctan

(
px
py

)
(20)

θ = arccos

(
pz
|~p|

)
(21)

By energy and momentum conservation in the CM system r is fixed. The angles ϕ
and θ are the two free parameters. The momentum conservation in this case reads
as follows:

θ∗1 = π − θ∗2 (22)

ϕ∗1 = π − ϕ∗2 (23)

The big advantage of choosing this coordinate system is that one does not need
to measure the particles momentum. However, in order to use these relations in
practice, we would have to transform the measured four-vectors from the TS into
the CM system. For this we would need to know the momentum components. Instead
we transform the relations (22) and (23) to the TS frame. As the beam is (by the
definition of the coordinate system) collinear with the z-axis one only has to perform
a Lorentz boost in z-direction for a transformation from TS to CMS. This means
that the transverse component (~p⊥) of the vector does not change under this Lorentz
transformation:

~p⊥ =|p1| · sin θ1 = |p∗1| · sin θ∗1 (24)
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The only reason why |p∗| and θ∗ obtain new values in the TS frame is the fact, that
the momentum component parallel to the beam direction (~p||) changes. This can be
expressed as follows:

~p|| =|p1| · cos θ1 = γpp|p∗1| · cos θ∗1 − γppβppE∗1 (25)

The transformation is determined by βpp and γpp which are the velocity and the
Lorentz factor of the initial p+p system. To obtain a transformation of the θ angle
from the CM into the TS frame without a dependency on p1 we divide (24) by (25)
and obtain:

tan θ1 =
sin θ∗1

γpp(cos θ∗1 − βpp
E∗

1

|p∗1|
)

(26)

tan θ1 =
sin θ∗1

γpp(cos θ∗1 −
βpp
β∗
1

)
(27)

If we use relation (22) that connects θ∗1 and θ∗2 we obtain:

tan θ2 =
sin(π − θ∗1)

γpp(cos(π − θ∗1)− βpp
β∗
1

)
(28)

tan θ2 =
sin θ∗1

γpp(− cos θ∗1 −
βpp
β∗
1

)
(29)

The value for βpp
β∗
1

can be derived using the following relations:

E∗1 =
m2
pp +m2

1 −m2
2

2mpp

(30)

|~p∗1| =
[(m2

pp − (m1 −m2)2)(m2
pp − (m1 +m2)2)]1/2

2mpp

(31)

and

Epp =
m2
pp −m2

B +m2
T

2mT

(32)

|~ppp| =
[(m2

T − (mpp −mB)2)(m2
T − (mpp +mB)2)]1/2

2mT

(33)
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m1 and m2 are the masses of the two outgoing particles. mB and |~pB| are the mass
and momentum of the beam particle. mT is the mass of the target particle. mpp and
Epp are here the mass and the energy of the combined vector of the target and beam

proton. As the relativistic velocity β is defined as p
E

we obtain βpp
β∗
1

=1.

Your Task: Derive equations (30) and (32). Can you connect tan θ1 and tan θ2

without any dependence on angles? What is the value for γ for a p+p reaction with
a beam kinetic energy of 3.5 GeV?

5.1 Selecting elastic collision events in an experiment

We have learned so far that two measured observables in a reaction are enough to
determine the full kinematics of elastic events. So applying cuts on tan θ1, tan θ2 and
ϕ1, ϕ2 would be sufficient to determine completely the four-vectors of both protons
for elastic events. When the event was however, a three body production instead of
a two body reaction we have 3 more degrees of freedom.

Note that in this case we need to measure 5 observables to explicitly determine all
components of the four-vectors. In case we explicitly measure 3 particles with our
detector there is no doubt that it was not an elastic scattering reaction but if we have
one or more missing particles we could see if for example the px and py components
of our two protons add up to zero. There are however cases where this still could
add up to roughly zero but is not a sign of a two body reaction.
This means that asking for two constraints in our data analysis is a necessary con-
straint but not a sufficient one. An easy way to check if there was another particle
produced is to investigate the missing mass of the two protons. We expect to see the
mass of the third particle with help of this observable.
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6 Reaction cross section

A value used in particle physics to characterize the probability of the particles inter-
action is a cross section. The reaction cross section is defined as

σ =
Rreac

Φ
,

where Rreac is a reaction rate for one target particle (number of reactions per unit
time), Φ is a particle flux (amount of bombarding particles per unit area and per
unit time, 1

cm2·s ).

The unit of a cross section is defined as barn:

1 b = 10−28 m2.

For particle reactions one normally uses milli- and microbarns, 10−3 · b and 10−6 · b,
respectively. Fig. 6 shows the energy dependence of the proton-proton cross section.
Data on elastic cross section can be found in Appendix A.

Figure 6: Total and elastic cross section of proton-proton collisions as a function of
the proton momentum in the laboratory reference frame [PDG]
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7 Shell commands

In the course of the practicum, a minimal knowledge of Linux console (shell) com-
mands is required.

Figure 7: Left: The symbol on your desktop to open the Terminal. Right: an open
terminal where you can type your commands.

Here is a list of the most important commands. To execute a command, write it in
the console and press enter.

Show the current directory. This is so to say the folder in which you work at the
current moment:

pwd

Change the current directory to directory named “dirname” (with this command
change between folders):

cd dirname

Show a list of the files in the current directory:

ls

To open C files you can use the text editor fte or any other editor you know and like.
You have to type in this case:

fte program_name.cc

To compile the program (make an executable file out of the program code):

make clean build install
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Run the (executable) program with name “program_name”.

./program_name

A very comfortable command is the tab option. If you start to write a directory
path or a macro name you can type the first letters and press the tab button on your
keyboard. The complete name will then be auto-filled if this is the only possibility if
however several possibilities exist how the name could be completed this option will
print you all possibilities in your shell.
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8 Basic C-operators

Comments
In C and C++ comments are marked with //. Any command written after this sign
will be ignored.

Variable creation
To create a variable one need to specify its type (integer, float or other) and its name:

Int_t var1; //integer type: 5, 100, -10

Float_t var2; //float type: 3.4, 3.14156

Note, that in C and C++ lines of code (different commands) are always separated
with a semicolon. A forgotten semicolon is a common mistake while programming.

Conditional statement
in C, a conditional statement has a following form:

if (condition) {

perform actions

}

for example, we fill a histogram, only if the condition that
√

(p2
x + p2

y) is greater 25.5
is fulfilled

if ( sqrt(px*px+py*py) > 25.5) {

h1->Fill(var1);

}

To build a logical condition there is a set of logical operators. Most of them have
intuitive meaning:

C-operator Meaning
a>b a is greater than b
a<b a is less than b
a==b a is equal to b
a!=b a is not equal to b
a&&b logical AND
a||b logical OR

Table 1: Logical operators in C
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Arithmetic operators

C-operator Meaning
+ add
- subtract
* multiply
/ divide

sqrt(a) square root of a
pow(a,b) ab

fabs(a) |a|

Table 2: Arithmetical operators in C

for-loop
C supports a number of loop types. For our purposes the so called for-loop is
enough. In such a loop a variable (in this case i) is defined. Each loop iteration
the variable is increased by a value of 1 (i++), until it reaches its maximum allowed
valued (i<100).

for (Int_t i = 0; i < 100; i++) {

h1->Fill(i); //filling the histogram

... //any commands on this place

... //any commands on this place

}

In this case, any operators on the place of ”...” will be repeated exactly 100 times
(integer variable i will take values from 0 to 99).
Also very useful is the cout command.
cout<<"Hello world"<<endl;

will print you the word Hello world on your screen when executed. But you can
also display variables in the code.
cout<<"This is the value of beta : "<<beta1<<endl;

will print you the actual value of beta1 on your screen. For example
This is the value of beta : 0.72

20



9 ROOT: a class packet for data analysis

ROOT is a specialized software package that was developed at CERN to serve the
needs of the particle physics community, especially for the data processing of the
experimental set-ups located at the LHC.

It is a C++ library that contains a number of useful classes. Here a basic knowledge
about working with ROOT will be given.

9.1 Working with 4-vectors

A dedicated class TLorentzVector to work with 4-vectors.

Create a 4-vector object with the name “particle_a”

TLorentzVector particle_a;

Set the components of a 4-vector:

particle_a.SetPxPyPzE(px, py, pz, E);

One can for example access easily polar and azimuthal angles θ, φ (in radians) and
rapidity y of the 4-vector:

Float_t theta = particle_a.Theta();

Float_t phi = particle_a.Phi();

Float_t y = particle_a.Rapidity();

A TLorentzVector class provides a convenient way to construct the sum of two and
more 4-vectors and calculate invariant and missing masses:

//construct a 4-vector named pairAB

//out of two 4-vectors particleA and particleB

TLorentzVector pairAB;

pairAB = particleA + particleB;

//calculate invariant mass of the 4-vector pairAB

Float_t M_inv = pairAB.M();

//construct a missing 4-vector, given initial (beam+target) 4-vector

TLorentzVector missed;
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missed = initial - pairAB;

//access the value of the missed mass

Float_t M_missed = missed.M();

9.2 Working with histograms

A histogram is a convenient and common way to represent the statistical behavior
of one or two variables. ROOT contains a set of classes to work with histograms.
For our purposes two of them are enough: TH1F and TH2F.

To create a histogram named h1 with 500 bins in the region of an X-value from 0
to 5:

TH1F *h1 = new TH1F("h1","Histogram title",500,0,5);

To add an entry to the histogram, just use the Fill() method. The entry in this
case should be either a number:

h1->Fill(2.3);

or a variable (named, in this example, “theta_1”), containing a number:

h1->Fill(theta_1);

After the histogram is filled with values, one can draw it:

h1->Draw();

Let’s now turn to 2-dimensional histograms. They are in particular helpful, when
one would like to analyze a correlation between two variables, for example angle θ
and momentum p of a particle.

To work with them is very similar to the 1-dimensional case, but now there are two
axes:

To create a two-dimensional histogram named h2 with 500 bins in the region of
X-values from 0 to 5 and 100 bins in the region of Y-values from -10 to 10 :

TH2F *h2 = new TH2F("h2","Histogram title",500,0,5,100,-10,10);

To add an entry to the two-dimensional histogram, one need to provide two values
(x,y)
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h1->Fill(4.5, -7);

or

h1->Fill(theta_1, theta_2);

Drawing of a histogram is completely analogous to the 1-dimensional case:

h1->Draw();

Much more information about histogram usage can be found in Chapter 3 of the
ROOT User’s Guide.
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10 Data for the analysis

The data for the analysis is prepared in form of an ntuple. An ntuple can be under-
stood as a simple table that contains different numerical values. Each row in such a
table corresponds to one event, and each column to one variable (see Table 3).

Event number Variable 1 Variable 2 ...
0 100.1 -200.5 ...
1 437.7 289.3 ...
... ... ... ...

Table 3: General logical structure of an ntuple

The ntuple prepared for the analysis was preselected to contain only events where
two particles were detected in the spectrometer. It contains several observables. In
each event the ntuple is filled with the extracted values:

Variable name Meaning
charge1 sign of the particle charge (+1 or −1)
beta1 β = v/c, where c is the speed of light
px1 px, x-component of the particle momentum
py1 py, y-component of the particle momentum
pz1 pz, z-component of the particle momentum

dedx1 particle energy loss in the detector (MDC chambers)

Table 4: Variables in the ntuple (for one particle) and their meaning

Since the prepared data sample always contains two reconstructed particles per event,
the ntuple contains exactly the same set of variables for particle 2 (charge2, beta2,
etc.).

Usually, a routine step in data reduction is to perform an iteration over the data
(in our case to go through each entry in the ntuple), select an interesting data
sub-sample, perform calculations when necessary, and obtain a result — typically a
number, or series of numbers.
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11 Tasks

For the completion of the practicum tasks use the provided template program. It
already contains an iteration over all events. And some skeleton of basic code.

11.1 Creation of 4-vectors

The first task is to construct out of the observables contained in the ntuple two
4-vectors (with help of the TLorentzVector class) for particle 1 and particle 2.

11.2 Analysis of proton-proton elastic collisions

After the construction of two 4-vectors you have all the needed information to select
events with proton-proton elastic collisions. The aim of this task is to develop a
strategy to select elastic events and estimate their amount.

1. What kind of observables can you use to select pp-elastic events?

2. Make histograms (one or two-dimensional) of the observables you would like
to constrain on.

3. Apply a constraint to one observable and see how the distribution of the other
observables change.

4. Introduce step by step more cuts until you think your events are pure enough
and document your analysis strategy with histograms. A general aim of a data
analysis is to select the targeted reaction with as low background as possible.
However, if the cut conditions applied are too strict you will, obviously, loose
a lot of statistic. Try to find a balance between efficiency (amount of signal)
and purity (amount of background events which remain after the cuts) of your
data analysis.

5. Estimate the total amount of elastic proton-proton collisions after your final
selection. For this select one final observable and plot this observable with
selective constrains on other observables.
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11.3 Analysis of a p+ p→ p+ p+ π0 reaction

The reconstruction of two protons in the final state is enough to select the reaction
p+ p+ π0.

1. Construct an observable to select events with π0.

2. Plot the chosen observable and identify events that correspond to the p+p+π0

reaction.

3. Is there a way to purify the data sample of events containing two protons and
a π0?

4. Estimate the number of p + p + π0 events. In this case of the event selection
the signal will be small as compared to the background underneath the signal.
Take a prepared function to fit the signal together with the background and
extract with help of the fit function Np+p+π0 .

11.4 Estimation of a cross-section of the p + p → p + p + π0

reaction

As explained in section 6 of this description, a cross section of the reaction char-
acterizes its probability. Let us label the number of observed elastic proton-proton
collisions as Npp and number of p+ p+ π0 reactions as Nppπ0 . Then

Npp

Nppπ0

=
σpp
σppπ0

,

where σpp and σppπ0 are the cross sections of pp-elastic and p + p + π0 reactions,
respectively.

1. Extract the number of pp elastic events Npp from 11.2 point 5.

2. Use the Appendix A to interpolate the elastic cross section at the beam mo-
mentum of the analyzed experiment.

3. Given a known cross-section of pp-elastic events and using the ratio between
the number of pp-elastic events and p+ p+ π0 production, calculate the cross
section of the p+ p+ π0 reaction.

4. Compare the obtained cross-section with the known value.
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Here we made an important assumption, that the acceptance of the events of p + p
and p + p + π0 reactions is the same. In general, the acceptance can depend very
strongly on the reaction. In our case, this assumption is acceptable (why?). Are
there other reasons why the two results are not direct comparable?

After completion of all the task a short report has to be written, summarizing the
analysis strategy and the obtained results.
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A p + p elastic cross sections

Here is the measured data on proton-proton elastic cross section, taken from the
PDG web page. The data is organized in the following columns: 1) measurement
number, 2) beam momentum (GeV/c) in the laboratory frame, 3) cross section (mb),
4) statistical uncertainty of the measurement (mb).

NUMBER PLAB(GEV/C) SIG(MB) ERR

01 2.22883 19.860 0.73000

02 2.80000 16.300 1.0000

03 2.80553 19.210 0.48000

04 3.00000 17.200 0.70000

05 3.03662 17.000 3.0000

06 3.65000 15.200 0.60000

07 3.67024 15.320 0.76000

08 4.00000 13.500 0.30000

09 4.15000 11.600 2.6000

10 4.80000 14.400 1.2000

11 5.00000 12.700 0.50000

12 5.25517 10.000 2.0000

13 5.52000 11.990 0.25000

14 5.96493 10.000 2.1000

15 6.00000 11.500 0.50000

16 6.60000 11.470 0.33000

17 6.79990 11.790 0.22000

18 6.80000 10.600 0.60000

19 6.92000 11.400 0.50000

20 7.02590 8.0000 2.0000

21 7.07634 9.7000 1.0000

22 7.07634 9.8000 0.90000

23 8.10000 10.800 0.40000

24 8.50000 8.7400 0.40000

25 8.80000 11.710 0.22000

26 8.80000 9.8000 0.30000

27 8.90000 10.100 0.50000

28 9.00000 10.840 0.32000
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http://pdg.lbl.gov/2010/hadronic-xsections/pp_elastic.dat
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